skip to main content


Title: Analyzing the Cascading Effect of Traffic Congestion Using LSTM Networks
This paper presents a data-driven approach for predicting the propagation of traffic congestion at road segments as a function of the congestion in their neighboring segments. In the past, this problem has mostly been addressed by modelling the traffic congestion over some standard physical phenomenon through which it is difficult to capture all the modalities of such a dynamic and complex system. While other recent works have focused on applying a generalized data-driven technique on the whole network at once, they often ignore intersection characteristics. On the contrary, we propose a city-wide ensemble of intersection level connected LSTM models and propose mechanisms for identifying congestion events using the predictions from the networks. To reduce the search space of likely congestion sinks we use the likelihood of congestion propagation in neighboring road segments of a congestion source that we learn from the past historical data. We validated our congestion forecasting framework on the real world traffic data of Nashville, USA and identified the onset of congestion in each of the neighboring segments of any congestion source with an average precision of 0.9269 and an average recall of 0.9118 tested over ten congestion events.  more » « less
Award ID(s):
1818901 1647015 1814958 1840052
NSF-PAR ID:
10166776
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
2144 to 2153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings. 
    more » « less
  2. Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings. 
    more » « less
  3. Modern smart cities need smart transportation solutions to quickly detect various traffic emergencies and incidents in the city to avoid cascading traffic disruptions. To materialize this, roadside units and ambient transportation sensors are being deployed to collect speed data that enables the monitoring of traffic conditions on each road segment. In this paper, we first propose a scalable data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. Second, using cluster-level detection, we propose a folded Gaussian classifier to pinpoint the particular segment in a cluster where the incident happened in an automated manner. We perform extensive experimental validation using mobility data collected from four cities in Tennessee, compare with the state-of-the-art ML methods, to prove that our method can detect incidents within each cluster in real-time and outperforms known ML methods. 
    more » « less
  4. Modern smart cities are focusing on smart transportation solutions to detect and mitigate the effects of various traffic incidents in the city. To materialize this, roadside units and ambient trans-portation sensors are being deployed to collect vehicular data that provides real-time traffic monitoring. In this paper, we first propose a real-time data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. We perform extensive experimental validation using mobility data collected from the City of Nashville, Tennessee, and prove that the method can detect incidents within each cluster in real-time. 
    more » « less
  5. Traffic networks are one of the most critical infrastructures for any community. The increasing integration of smart and connected sensors in traffic networks provides researchers with unique opportunities to study the dynamics of this critical community infrastructure. Our focus in this paper is on the failure dynamics of traffic networks. By failure, we mean in this domain the hindrance of the normal operation of a traffic network due to cyber anomalies or physical incidents that cause cascaded congestion throughout the network. We are specifically interested in analyzing the cascade effects of traffic congestion caused by physical incidents, focusing on developing mechanisms to isolate and identify the source of a congestion. To analyze failure propagation, it is crucial to develop (a) monitors that can identify an anomaly and (b) a model to capture the dynamics of anomaly propagation. In this paper, we use real traffic data from Nashville, TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph based diagnostics mechanism. Our novelty lies in the ability to capture the the spatial information and the interconnections of the traffic network as well as the use of recurrent neural network architectures to learn and predict the operation of a graph edge as a function of its immediate peers, including both incoming and outgoing branches. Our results show that our LSTM-based traffic-speed predictors attain an average mean squared error of 6.55 10−4 on predicting normalized traffic speed, while Gaussian Process Regression based predictors attain a much higher aver- age mean squared error of 1.78 10−2. We are also able to detect anomalies with high precision and recall, resulting in an AUC (Area Under Curve) of 0.8507 for the precision- recall curve. To study physical traffic incidents, we augment the real data with simulated data generated using SUMO, a traffic simulator. Finally, we analyzed the cascading effect of the congestion propagation by formulating the problem as a Timed Failure Propagation Graph, which led us in identifying the source of a failure/congestion accurately. 
    more » « less