skip to main content


Title: PeerPresents: A Web-Based System for In-Class Peer Feedback during Student Presentations
Peer feedback systems enable students to get feedback without substantially burdening the instructor. However, current systems typically ask students to provide feedback after class; this introduces challenges for ensuring relevant, timely, diverse, and sufficient amounts of feedback, and reduces time available for student reflection. This paper explores the current landscape of peer feedback tools and introduces a novel system for in-class peer review called PeerPresents where students can quickly exchange feed-back on projects without being burdened by additional work outside of class. Through an exploratory study with Google docs and a preliminary evaluation of PeerPresents, we find students can receive immediate, copious, and diverse peer feedback through a structured in-class activity. Students also described the feedback they received as helpful and reported that they gave more feedback than without using the system. These early results demonstrate the potential benefits of in-class peer feedback systems.  more » « less
Award ID(s):
1821590
NSF-PAR ID:
10117958
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2016 ACM Conference on Designing Interactive Systems
Page Range / eLocation ID:
447 to 458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peer assessment, as a form of collaborative learning, can engage students in active learning and improve their learning gains. However, current teaching platforms and programming environments provide little support to integrate peer assessment for in-class programming exercises. We identified challenges in conducting such exercises and adopting peer assessment through formative interviews with instructors of introductory programming courses. To address these challenges, we introduce PuzzleMe, a tool to help Computer Science instructors to conduct engaging in-class programming exercises. PuzzleMe leverages peer assessment to support a collaboration model where students provide timely feedback on their peers' work. We propose two assessment techniques tailored to in-class programming exercises: live peer testing and live peer code review. Live peer testing can improve students' code robustness by allowing them to create and share lightweight tests with peers. Live peer code review can improve code understanding by intelligently grouping students to maximize meaningful code reviews. A two-week deployment study revealed that PuzzleMe encourages students to write useful test cases, identify code problems, correct misunderstandings, and learn a diverse set of problem-solving approaches from peers. 
    more » « less
  2. Peer feedback is a central activity for project-based design education. The prevalence of devices carried by students and the emergence of novel peer feedback systems enables the possibility of collecting and sharing feedback immediately between students during class. However, pen and paper is thought to be more familiar, less distracting for students, and easier for instructors to implement and manage. To evaluate the efficacy of in-class digital feedback systems, we conducted a within-subjects study with 73 students during two weeks of a game design course. After short student presentations, while instructors provided verbal feedback, peers provided feedback either on paper or through a device. The study found that both methods yielded comments of similar quality and quantity, but the digital approach provided additional ways for students to participate and required less effort from the instructors. While both methods produced similar behaviors, students held inaccurate perceptions about their behavior with each method. We discuss design implications for technologies to support in-class feedback exchange. 
    more » « less
  3. The 2021 return to face-to-face teaching and proctored exams revealed significant gaps in student learning during remote instruction. The challenge of supporting underperforming students is not expected to abate in the next 5-10 years as COVID-19-related learning losses compound structural inequalities in K-12 education. More recently, anecdotal evidence across courses shows declines in classroom attendance and student engagement. Lack of engagement indicates emotional barriers rather than intellectual deficiencies, and its growth coincides with the ongoing mental health epidemic. Regardless of the underlying reasons, professors are now faced with the unappealing choice of awarding failing grades to an uncomfortably large fraction of classes or awarding passing grades to students who do not seem prepared for the workforce or adult life in general. Faculty training, if it exists, addresses neither the scale of this situation nor the emotional/identity aspects of the problem. There is an urgent need for pedagogical remediation tools that can be applied without additional TA or staff resources, without training in psychiatry, and with only five or eight weeks remaining in the semester. This work presents two work-in-progress interventions for engineering faculty who face the challenges described above. In the first intervention, students can improve their exam score by submitting videos of reworked exams. The requirement of voiceover forces students to understand the thought process behind problems, even if they have copied the answers from a friend. Incorporating peer review into the assignment reduces the workload for instructor grading. This intervention has been successfully implemented in sophomore- and senior-level courses with positive feedback from both faculty and students. In the second intervention, students who fail the midterm are offered an automatic passing exam grade (typically 51%) in exchange for submitting a knowledge inventory and remediation plan. Students create a glossary of terms and concepts from the class and rank them by their level of understanding. Recent iterations of the remediation plan also include reflections on emotions and support networks. In February 2023, the project team will scale the interventions to freshman-level Introductory Programming, which has 400 students and the highest fail/withdrawal rate in the college. The large sample size will enable more robust statistics to correlate exam scores, intervention rubric items, and surveys on assignment effectiveness. Piloting interventions in a variety of environments and classes will establish best pedagogical practices that minimize instructors’ workload and decision fatigue. The ultimate goal of this project is to benefit students and faculty through well-defined and systematic interventions across the curriculum. 
    more » « less
  4. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less
  5. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less