skip to main content


Title: Better Organization or a Source of Distraction?: Introducing Digital Peer Feedback to a Paper-Based Classroom
Peer feedback is a central activity for project-based design education. The prevalence of devices carried by students and the emergence of novel peer feedback systems enables the possibility of collecting and sharing feedback immediately between students during class. However, pen and paper is thought to be more familiar, less distracting for students, and easier for instructors to implement and manage. To evaluate the efficacy of in-class digital feedback systems, we conducted a within-subjects study with 73 students during two weeks of a game design course. After short student presentations, while instructors provided verbal feedback, peers provided feedback either on paper or through a device. The study found that both methods yielded comments of similar quality and quantity, but the digital approach provided additional ways for students to participate and required less effort from the instructors. While both methods produced similar behaviors, students held inaccurate perceptions about their behavior with each method. We discuss design implications for technologies to support in-class feedback exchange.  more » « less
Award ID(s):
1821590
NSF-PAR ID:
10117959
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
5545 to 5555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peer feedback systems enable students to get feedback without substantially burdening the instructor. However, current systems typically ask students to provide feedback after class; this introduces challenges for ensuring relevant, timely, diverse, and sufficient amounts of feedback, and reduces time available for student reflection. This paper explores the current landscape of peer feedback tools and introduces a novel system for in-class peer review called PeerPresents where students can quickly exchange feed-back on projects without being burdened by additional work outside of class. Through an exploratory study with Google docs and a preliminary evaluation of PeerPresents, we find students can receive immediate, copious, and diverse peer feedback through a structured in-class activity. Students also described the feedback they received as helpful and reported that they gave more feedback than without using the system. These early results demonstrate the potential benefits of in-class peer feedback systems. 
    more » « less
  2. Peer review is useful for providing students with formative feedback, yet it is used less frequently in STEM classrooms and for supporting writing-to-learn (WTL). While research indicates the benefits of incorporating peer review into classrooms, less research is focused on students’ perceptions thereof. Such research is important as it speaks to the mechanisms whereby peer review can support learning. This study examines students’ self-reported approaches to and perceptions of peer review and revision associated with WTL assignments implemented in an organic chemistry course. Students responded to a survey covering how they approached peer review and revision and the benefits they perceived from participating in each. Findings indicate that the assignment materials guided students’ approaches during both peer review and revision. Furthermore, students described various ways both receiving feedback from their peers and reading their peers’ drafts were beneficial, but primarily connected their revisions to receiving feedback.

     
    more » « less
  3. Peer assessment, as a form of collaborative learning, can engage students in active learning and improve their learning gains. However, current teaching platforms and programming environments provide little support to integrate peer assessment for in-class programming exercises. We identified challenges in conducting such exercises and adopting peer assessment through formative interviews with instructors of introductory programming courses. To address these challenges, we introduce PuzzleMe, a tool to help Computer Science instructors to conduct engaging in-class programming exercises. PuzzleMe leverages peer assessment to support a collaboration model where students provide timely feedback on their peers' work. We propose two assessment techniques tailored to in-class programming exercises: live peer testing and live peer code review. Live peer testing can improve students' code robustness by allowing them to create and share lightweight tests with peers. Live peer code review can improve code understanding by intelligently grouping students to maximize meaningful code reviews. A two-week deployment study revealed that PuzzleMe encourages students to write useful test cases, identify code problems, correct misunderstandings, and learn a diverse set of problem-solving approaches from peers. 
    more » « less
  4. Starting in March 2020, the COVID19 pandemic instantly affected the education of 14 million higher education students in the USA. The switch to remote instruction caught instructors and students off guard – teachers had to change their techniques, approaches, and course content rapidly (called “panicgogy”), and students had to adjust to remote instruction in a hurry. Hoping that the pandemic would not last too long, most had expected to return to the regular class format at most by the Fall semester. That expectation was quickly squashed as the summer semester progressed. If one were teaching a face-to-face classroom in a flipped modality, it would be even more challenging to teach a flipped class in an online environment. In this paper, we present how the instructor overhauled a face-to-face flipped class in Numerical Methods to an online environment. This involved 1) rethinking the learning design of the course content via the learning management system, 2) using Microsoft forms as personal response systems, and YouTube for video lectures, 3) not only using break-out rooms for peer-to-peer learning but the “main room” for individual learning as well, 4) exploit the availability of two computers and multiple monitors to deliver and observe the synchronous part of the class, 5) use of discussion boards to streamline the flow of communication that would have otherwise been unwieldy for the instructor, TAs, and students alike, 6) changes made to assessment as it had to be carried online and within a proctoring software environment, 7) changes in the conducting of office hours. The above items will be discussed in the paper, and comparisons of face-to-face and online implementations will be made. The ultimate goal is to present a logic model for a typical lecture-based online flipped STEM classroom for efficient and effective implementation by other instructors. 
    more » « less
  5. Peer Instruction (PI) is a lecture-based active learning approach that has students solve a difficult multiple-choice question individually, submit their answer, discuss their answer with peers, and then submit their answer again. Despite plentiful evidence to support its effectiveness, PI has not been widely adopted by undergraduate computing instructors due to low awareness of PI, the effort needed to create PI questions, the limited instructional time needed for PI activities during lectures, and potential adverse reactions from students. We hypothesized that we could allay some of these concerns by hosting a three-day summer workshop on Peer Instruction for instructors and building and sharing a free tool and a question bank that supports PI in an open-source ebook platform. We invited eighteen instructors to attend an in-person three-day workshop on PI in the summer of 2022. We collected their feedback by using pre and post surveys and conducting semi-structured interviews. We report on the effect of the three-day summer workshop on instructor attitudes towards and knowledge of PI, the barriers that prevented instructors from adopting the free tool, and feedback from instructors who used the tool. The results show that most workshop attendees reported that they planned to use the tool in the fall semester, but less than half actually did. Responses from both users and non-users yield insights about the support instructors need to adopt new tools. This research informs future professional development workshops, tool development, and how to better support instructors interested in adopting Peer Instruction. 
    more » « less