This paper describes a methodology for designing feed networks for single-polarized aperture-coupled microstrip patch (ACMP) antennas with dual-offset microstrip feedlines. The method involves characterizing the effective series impedance of the antenna when it is fed in a balanced manner as a function of the distance between the dual feedlines. Fitting equations were generated from the data to relate the effective series impedance to the feed geometry, allowing the design of the matching network for any effective impedance. This work demonstrates that ACMP antennas can be coupled to dual-offset feedlines with λ/4 transformers and T-junctions with infinite combinations of impedance for the λ/4 transformer. A 10 GHz single-polarized ACMP antenna was designed and implemented obtaining satisfactory impedance matching.
more »
« less
A 4 by 10 series 60 GHz microstrip array antenna fed by butler matrix for 5G applications
This paper presents a low-cost, beam-steerable 4 × 10 antenna array system operating at 60 GHz. The proposed antenna system is fed by a 4 × 10 Butler Matrix network designed using microstrip line (ML) structure. Chebyshev tapered microstrip antenna arrays with 10 series-fed elements are connected to four output ports of the feed network. Four steerable beams with maximum 16.5 dBi system gain and 1GHz bandwidth(BW) satisfy the requirements of millimeter wave propagation study and handset application for 5G communication.
more »
« less
- Award ID(s):
- 1828236
- PAR ID:
- 10118260
- Date Published:
- Journal Name:
- 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper presents a novel low loss 3D system in package (SiP) approach for achieving antenna-on-chip integration. Specifically, this design uses 3D through silicon via (TSV) technology to achieve a vertical SiP phased array radio. The fully integrated package consists of a digital baseband chip, a radio frequency integrated circuit (RFIC), and lastly a microstrip patch phased array. The 3D TSVs achieve an insertion loss of less than 0.4 dB/pair at millimeter-wave frequencies. The differential fed microstrip patch array achieves a return loss of 40 dB at a 60 GHz center frequency with 4 GHz instantaneous bandwidth. The antenna array achieves an E and H plane realized gain of 17.1 dBi for a 4×4 element design. In addition, this design approach enables individual fabrication of each element to maximize yield with low cost assembly using ball grid array (BGA) technology. Lastly, this design does not require special design rules that comprise either transistor or antenna performance as compared to other methods outlined in antenna on chip design.more » « less
-
This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper.more » « less
-
This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands.more » « less
-
This paper presents the design and simulation of a 24 GHz 1×5 series-fed microstrip patch antenna array and its performance analysis with structural deformation. The optimized design comprises of 5 antenna elements arranged in series, where the entire design is symmetric about the center antenna element. The parameters such as S11 , gain vs. theta plots are analyzed with and without the material deformation. The shape deformation analysis is indeed needed to determine the performance efficiency of the designed antenna when deployed on drones, where the antenna needs to be flexible enough to be aligned with the curvature of drone's body. The simulation results are analyzed to see how best can the proposed antenna array can perform with the structural deformation.more » « less
An official website of the United States government

