skip to main content


Title: A comparison between hydrogen and halogen bonding: the hypohalous acid–water dimers, HOX⋯H 2 O (X = F, Cl, Br)
Hypohalous acids (HOX) are a class of molecules that play a key role in the atmospheric seasonal depletion of ozone and have the ability to form both hydrogen and halogen bonds. The interactions between the HOX monomers (X = F, Cl, Br) and water have been studied at the CCSD(T)/aug-cc-pVTZ level of theory with the spin free X2C-1e method to account for scalar relativistic effects. Focal point analysis was used to determine CCSDT(Q)/CBS dissociation energies. The anti hydrogen bonded dimers were found with interaction energies of −5.62 kcal mol −1 , −5.56 kcal mol −1 , and −4.97 kcal mol −1 for X = F, Cl, and Br, respectively. The weaker halogen bonded dimers were found to have interaction energies of −1.71 kcal mol −1 and −3.03 kcal mol −1 for X = Cl and Br, respectively. Natural bond orbital analysis and symmetry adapted perturbation theory were used to discern the nature of the halogen and hydrogen bonds and trends due to halogen substitution. The halogen bonds were determined to be weaker than the analogous hydrogen bonds in all cases but close enough in energy to be relevant, significantly more so with increasing halogen size.  more » « less
Award ID(s):
1661604
NSF-PAR ID:
10118793
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
11
ISSN:
1463-9076
Page Range / eLocation ID:
6160 to 6170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug‐cc‐pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug‐cc‐pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug‐cc‐pwCVDZ‐PP pseudopotential. 27 HOX⋯SO2complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2complexes in this study ranged from 1.35 to 3.81 kcal mol−1. The single‐interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol−1, while the single‐interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol−1, indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2which may guide further research of related systems.

     
    more » « less
  2. The ability of two anions to interact with one another is tested in the context of pairs of TrX 4 − homodimers, where Tr represents any of the triel atoms B, Al, Ga, In, or Tl, and X refers to a halogen substituent F, Cl, or Br. None of these pairs engage in a stable complex in the gas phase, but the situation reverses in water where the two monomers are held together by Tr⋯X triel bonds, complemented by stabilizing interactions between X atoms. Some of these bonds are quite strong, notably those involving TrF 4 − , with interaction energies surpassing 30 kcal mol −1 . Others are very much weaker, with scarcely exothermic binding energies. The highly repulsive electrostatic interactions are counteracted by large polarization energies. 
    more » « less
  3. Dimer interaction energies have been well studied in computational chemistry, but they can offer an incomplete understanding of molecular binding depending on the system. In the current study, we present a dataset of focal-point coupled-cluster interaction and deformation energies (summing to binding energies, De) of 28 organic molecular dimers. We use these highly accurate energies to evaluate ten density functional approximations for their accuracy. The best performing method (with a double-ζ basis set), B97M-D3BJ, is then used to calculate the binding energies of 104 organic dimers, and we analyze the influence of the nature and strength of interaction on deformation energies. Deformation energies can be as large as 50% of the dimer interaction energy, especially when hydrogen bonding is present. In most cases, two or more hydrogen bonds present in a dimer correspond to an interaction energy of −10 to −25 kcal mol−1, allowing a deformation energy above 1 kcal mol−1 (and up to 9.5 kcal mol−1). A lack of hydrogen bonding usually restricts the deformation energy to below 1 kcal mol−1 due to the weaker interaction energy. 
    more » « less
  4. Abstract

    Aluminyl anions are low‐valent, anionic, and carbenoid aluminum species commonly found stabilized with potassium cations from the reaction of Al‐halogen precursors and alkali compounds. These systems are very reactive toward the activation ofσ‐bonds and in reactions with electrophiles. Various research groups have detected that the potassium atoms play a stabilization role via electrostatic and cationinteractions with nearby (aromatic)‐carbocyclic rings from both the ligand and from the reaction with unsaturated substrates. Since stabilizing K⋯H bonds are witnessed in the activation of this class of molecules, we aim to unveil the role of these metals in the activation of the smaller and less polarizable H2molecule, together with a comprehensive characterization of the reaction mechanism. In this work, the activation of H2utilizing a NON‐xanthene‐Al dimer, [K{Al(NON)}]2(D) and monomeric, [Al(NON)](M) complexes are studied using density functional theory and high‐level coupled‐cluster theory to reveal the potential role of K+atoms during the activation of this gas. Furthermore, we aim to reveal whetherDis more reactive thanM(or vice versa), or if complicity between the two monomer units exits within theDcomplex toward the activation of H2. The results suggest that activation energies using the dimeric and monomeric complexes were found to be very close (around 33 kcal mol−1). However, a partition of activation energies unveiled that the nature of the energy barriers for the monomeric and dimeric complexes are inherently different. The former is dominated by a more substantial distortion of the reactants (and increased interaction energies between them). Interestingly, during the oxidative addition, the distortion of the Al complex is minimal, while H2distorts the most, usually over 0.77. Overall, it is found here that electrostatic and induction energies between the complexes and H2are the main stabilizing components up to the respective transition states. The results suggest that the K+atoms act as stabilizers of the dimeric structure, and their cooperative role on the reaction mechanism may be negligible, acting as mere spectators in the activation of H2. Cooperation between the two monomers inDis lacking, and therefore the subsequent activation of H2is wholly disengaged.

     
    more » « less
  5. Abstract

    The replacement of a CH group of benzene by a triel (Tr) atom places a positive region of electrostatic potential near the Tr atom in the plane of the aromatic ring. This σ‐hole can interact with an X lone pair of XCCH (X=F, Cl, Br, and I) to form a triel bond (TrB). The interaction energy between C5H5Tr and FCCH lies in the range between 2.2 and 4.4 kcal/mol, in the order Tr=B+cation above the ring pulls density toward itself and thus magnifies the Tr σ‐hole. The TrB to the XCCH nucleophile is thereby magnified as is the strength of the TrB. This positive cooperativity is particularly large for Tr=B.

     
    more » « less