Politicians often claim to be "following science" but their claims are, reasonably, disputed. To claim to be following the science can mean that scientific evidence affects or legitimates decisions. The evidence that politicians are following science often comes from formal systems of advice that translate science into advice. We study the systems that informed policy in France, Germany, and the UK during the COVID-19 pandemic. We found that while in all three countries politicians had incentive to prefer private advice tailored to their needs, more transparent and independent advice appeared to contribute more to good policymaking and implementation, including by enhancing government's current and future accountability for their decisions.
more »
« less
Understanding and Formalizing Accountability for Cyber-Physical Systems
Accountability is the property of a system that enables the uncovering of causes for events and helps understand who or what is responsible for these events. Definitions and interpretations of accountability differ; however, they are typically expressed in natural language that obscures design decisions and the impact on the overall system. This paper presents a formal model to express the accountability properties of cyber-physical systems. To illustrate the usefulness of our approach, we demonstrate how three different interpretations of accountability can be expressed using the proposed model and describe the implementation implications through a case study. This formal model can be used to highlight context specific-elements of accountability mechanisms, define their capabilities, and express different notions of accountability. In addition, it makes design decisions explicit and facilitates discussion, analysis and comparison of different approaches.
more »
« less
- Award ID(s):
- 1743772
- PAR ID:
- 10118958
- Date Published:
- Journal Name:
- IEEE Conference for Systems, Men and Cybernetics
- Page Range / eLocation ID:
- 3165 to 3170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern cyber-physical systems-of-systems (CPSoS) operate in complex systems-of-systems that must seamlessly work together to control safety- or mission-critical functions. Linear Temporal Logic (LTL) and Mission-time Linear Temporal logic (MLTL) intuitively express CPSoS requirements for automated system verification and validation. However, both LTL and MLTL presume that all signals populating the variables in a formula are sampled over the same rate and type (e.g., time or distance), and agree on a standard “time” step. Formal verification of cyber-physical systems-of-systems needs validate-able requirements expressed over (sub-)system signals of different types, such as signals sampled at different timescales, distances, or levels of abstraction, expressed in the same formula. Previous works developed more expressive logics to account for types (e.g., timescales) by sacrificing the intuitive simplicity of LTL. However, a legible direct one-to-one correspondence between a verbal and formal specification will ease validation, reduce bugs, increase productivity, and linearize the workflow from a project’s conception to actualization. Validation includes both transparency for human interpretation, and tractability for automated reasoning, as CPSoS often run on resource-limited embedded systems. To address these challenges, we introduced Mission-time Linear Temporal Logic Multi-type (Hariharan et al., Numerical Software Verification Workshop, 2022), a logic building on MLTL. MLTLM enables writing formal requirements over finite input signals (e.g., sensor signals and local computations) of different types, while maintaining the same simplicity as LTL and MLTL. Furthermore, MLTLM maintains a direct correspondence between a verbal requirement and its corresponding formal specification. Additionally, reasoning a formal specification in the intended type (e.g., hourly for an hourly rate, and per second for a seconds rate) will use significantly less memory in resource-constrained hardware. This article extends the previous work with (1) many illustrated examples on types (e.g., time and space) expressed in the same specification, (2) proofs omitted for space in the workshop version, (3) proofs of succinctness of MLTLM compared to MLTL, and (4) a minimal translation to MLTL of optimal length.more » « less
-
null (Ed.)The increasing use of automated decision making (ADM) and machine learning sparked an ongoing discussion about algorithmic accountability. Within computer science, a new form of producing accountability has been discussed recently: causality as an expression of algorithmic accountability, formalized using structural causal models (SCMs). However, causality itself is a concept that needs further exploration. Therefore, in this contribution we confront ideas of SCMs with insights from social theory, more explicitly pragmatism, and argue that formal expressions of causality must always be seen in the context of the social system in which they are applied. This results in the formulation of further research questions and directions.more » « less
-
Modern cyber-physical systems (CPS) are often developed in a model-based development (MBD) paradigm. The MBD paradigm involves the construction of different kinds of models: (1) a plant model that encapsulates the physical components of the system (e.g., mechanical, electrical, chemical components) using representations based on differential and algebraic equations, (2) a controller model that encapsulates the embedded software components of the system, and (3) an environment model that encapsulates physical assumptions on the external environment of the CPS application. In order to reason about the correctness of CPS applications, we typically pose the following question: For all possible environment scenarios, does the closed-loop system consisting of the plant and the controller exhibit the desired behavior? Typically, the desired behavior is expressed in terms of properties that specify unsafe behaviors of the closed-loop system. Often, such behaviors are expressed using variants of real-time temporal logics. In this chapter, we will examine formal methods based on bounded-time reachability analysis, simulation-guided reachability analysis, deductive techniques based on safety invariants, and formal, requirement-driven testing techniques. We will review key results in the literature, and discuss the scalability and applicability of such systems to various academic and industrial contexts. We conclude this chapter by discussing the challenge to formal verification and testing techniques posed by newer CPS applications that use AI-based software components.more » « less
-
Abstract During a design process, designers iteratively go back and forth between different design stages to explore the design space and search for the best design solution that satisfies all design constraints. For complex design problems, human has shown surprising capability in effectively reducing the dimensionality of design space and quickly converging it to a reasonable range for algorithms to step in and continue the search process. Therefore, modeling how human designers make decisions in such a sequential design process can help discover beneficial design patterns, strategies, and heuristics, which are important to the development of new algorithms embedded with human intelligence to augment computational design. In this paper, we develop a deep learning based approach to model and predict designers’ sequential decisions in a system design context. The core of this approach is an integration of the function-behavior-structure model for design process characterization and the long short term memory unit model for deep leaning. This approach is demonstrated in a solar energy system design case study, and its prediction accuracy is evaluated benchmarked on several commonly used models for sequential design decisions, such as Markov Chain model, Hidden Markov Chain model, and random sequence generation model. The results indicate that the proposed approach outperforms the other traditional models. This implies that during a system design task, designers are very likely to reply on both short-term and long-term memory of past design decisions in guiding their decision making in future design process. Our approach is general to be applied in many other design contexts as long as the sequential design action data is available.more » « less
An official website of the United States government

