skip to main content


Title: Outage-Optimized Deployment of UAVs
We consider multiple unmanned aerial vehi- cles (UAVs) serving a density of ground terminals (GTs) as mobile base stations. The objective is to minimize the outage probability of GT-to-UAV transmissions. In this context, the optimal placement of UAVs under different UAV altitude constraints and GT densities is studied. First, using a random deployment argument, a general upper bound on the optimal outage probability is found for any density of GTs and any number of UAVs. Lower bounds on the performance of optimal deployments are also deter- mined. The upper and lower bounds are combined to show that the optimal outage probability decays exponentially with the number of UAVs for GT densities with finite support. Next, the structure of optimal deployments are studied when the common altitude constraint is large. In this case, for a wide class of GT densities, it is shown that all UAVs should be placed to the same location in an optimal deployment. A design implication is that one can use a single multi-antenna UAV as opposed to multiple single-antenna UAVs without loss of optimality. Numerical optimization of UAV deployments are carried out using particle swarm optimization. Simulation results are also presented to confirm the analytical findings.  more » « less
Award ID(s):
1814717
NSF-PAR ID:
10118986
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unmanned aerial vehicles (UAVs) can supplement the existing ground-based heterogeneous cellular networks (Het-Nets), by replacing/supporting damaged infrastructure, providing real-time video support at the site of an emergency, offloading traffic in congested areas, extending coverage, and filling coverage gaps. In this paper, we introduce distributed algorithms that leverage UAV mobility, enhanced inter-cell interference coordination (ICIC), and cell range expansion (CRE) techniques defined in 3GPP Release-10 and 3GPP Release-11. Through Monte-Carlo simulations, we compare the system-wide 5th percentile spectral efficiency (5pSE) while optimizing the performance using a brute force algorithm, a heuristic-based sequential algorithm, and a deep Q-learning algorithm. The autonomous UAVs jointly optimize their location, ICIC parameters, and CRE to maximize 5pSE gains and minimize the outage probability. Our results show that the ICIC technique relying on a simple heuristic outperforms the ICIC technique based on deep Q-learning. Taking advantage of the multiple optimization parameters for interference coordination, the heuristic based ICIC technique can achieve 5pSE values that are reasonably close to those achieved with exhaustive brute force search techniques, at a significantly lower computational complexity. 
    more » « less
  2. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less
  3. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) often lack the size, weight, and power to support large antenna arrays or a large number of radio chains. Despite such limitations, emerging applications that require the use of swarms, where UAVs form a pattern and coordinate towards a common goal, must have the capability to transmit in any direction in three-dimensional (3D) space from moment to moment. In this work, we design a measurement study to evaluate the role of antenna polarization diversity on UAV systems communicating in arbitrary 3D space. To do so, we construct flight patterns where one transmitting UAV is hovering at a high altitude (80 m) and a receiving UAV hovers at 114 different positions that span 3D space at a radial distance of approximately 20 m along equally-spaced elevation and azimuth angles. To understand the role of diverse antenna polarizations, both UAVs have a horizontally-mounted antenna and a vertically-mounted antenna-each attached to a dedicated radio chain-creating four wireless channels. With this measurement campaign, we seek to understand how to optimally select an antenna orientation and quantify the gains in such selections. 
    more » « less
  4. In this paper, we propose a generalized millimeter-Wave (mmWave) reconfigurable antenna multiple-input multiple-output (RA-MIMO) architecture that takes advantage of lens antennas. The considered antennas can generate multiple independent beams simultaneously using a single RF chain. This property, together with RA-MIMO, is used to combat small-scale fading and shadowing in mmWave bands. To this end, first, we derive a channel matrix for RA-MIMO. Then, we use rate-one space-time block codes (STBCs), together with phase-shifters at the receive reconfigurable antennas, to suppress the effect of small-scale fading. We consider two kinds of phase shifters: i) ideal which is error-free and ii) digital which adds quantization error. The goal of phase-shifters is to convert a complex-valued channel matrix into real-valued. Hence, it is possible to use rate-one STBCs for any dimension of RA-MIMO. We investigate diversity gain and derive an upper bound for symbol error rate in cases of ideal and digital phase-shifters. We show that RA-MIMO achieves the full-diversity gain with ideal phase-shifters and the full-diversity gain for digital phase-shifters when the number of quantization bits is higher than one. We investigate RA-MIMO in the presence of shadowing. Our analysis demonstrates that, by increasing the dimension of RA-MIMO, the outage probability decreases which means the effect of shadowing decreases. Numerical results verify our theoretical derivations. 
    more » « less
  5. Vapor loss and molecular absorption make the transmission distance in sub-Terahertz bands a challenge, especially in mobile statues such as UAVs communication. The molecular absorption element is an essential part of the path loss in THz communication channel modeling that cannot be neglected. Along this direction, we investigated the UAV trajectories in sub-THz band. To maximize the secrecy rate of the UAVs communication, an optimization problem has been proposed to jointly optimize the trajectory and transmit power. To enhance the obtained average secrecy rate, MIMO communication and a cooperative UAV jammer strategy were used in this paper. Also, analysis and simulations results were presented to show the performance of UAV-ground communication at THz communications. Finally, Secrecy Outage Probability was obtained for each UAV trajectories in different flight periods to examine the performance of physical layer security added to the UAVground communication at sub-THz communication. 
    more » « less