skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An exploding N-isocyanide reagent formally composed of anthracene, dinitrogen and a carbon atom
Targeted as an example of a compound composed of a carbon atom together with two stable neutral leaving groups, 7-isocyano-7-azadibenzonorbornadiene, CN 2 A ( 1 , A = C 14 H 10 or anthracene) has been synthesized and spectroscopically and structurally characterized. The terminal C atom of 1 can be transferred: mesityl nitrile oxide reacts with 1 to produce carbon monoxide, likely via intermediacy of the N -isocyanate OCN 2 A . Reaction of 1 with [RuCl 2 (CO)(PCy 3 ) 2 ] leads to [RuCl 2 (CO)( 1 )(PCy 3 ) 2 ] which decomposes unselectively: in the product mixture, the carbide complex [RuCl 2 (C)(PCy 3 ) 2 ] was detected. Upon heating in the solid state or in solution, 1 decomposes to A , N 2 and cyanogen (C 2 N 2 ) as substantiated using molecular beam mass spectrometry, IR and NMR spectroscopy techniques.  more » « less
Award ID(s):
1664799 1362118
PAR ID:
10119258
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chem. Commun.
Volume:
53
Issue:
83
ISSN:
1359-7345
Page Range / eLocation ID:
11500 to 11503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The catalytic one‐bond isomerization (transposition) of 1‐alkenes is an emerging approach toZ‐2‐alkenes. Design of more selective catalysts would benefit from a mechanistic understanding of factors controllingZselectivity. We propose here a reaction pathway forcis‐Mo(CO)4(PCy3)(piperidine) (3), a precatalyst that shows highZselectivity for transposition of alpha olefins (e. g., 1‐octene to 2‐octene, 18 : 1Z : Eat 74 % conversion). Computational modeling of reaction pathways and isotopic labeling suggests the isomerization takes place via an allyl (1,3‐hydride shift) pathway, where oxidative addition offac‐(CO)3Mo(PCy3)(η2‐alkene) is followed by hydride migration from one position (cisto allyl C3carbon) to another (cisto allyl C1carbon) via hydride/CO exchanges. Calculated barriers for the hydride migration pathway are lower than explored alternative mechanisms (e. g., change of allyl hapticity, allyl rotation). To our knowledge, this is the first study to propose such a hydride migration in alkene isomerization. 
    more » « less
  2. Density functional theory studies show that the lowest energy C 4 F 8 Fe(CO) 4 structure is not the very stable experimentally known ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 obtained from Fe(CO) 12 and tetrafluoroethylene. Instead isomeric (perfluoroolefin)Fe(CO) 4 structures derived from perfluoro-2-butene, perfluoro-1-butene, and perfluoro-2-methylpropene are significantly lower energy structures by up to ∼17 kcal mol −1 . However, the activation energies for the required fluorine shifts from one carbon to an adjacent carbon atom to form these (perfluoroolefin)Fe(CO) 4 complexes from tetrafluoroethylene are very high ( e.g. , ∼70 kcal mol −1 ). Therefore the ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 , which does not require a fluorine shift to form from Fe 3 (CO) 12 and tetrafluoroethylene, is the kinetically favored product. The lowest energy structures of the binuclear (C 4 F 8 ) 2 Fe 2 (CO) n ( n = 7, 6) derivatives have bridging perfluorocarbene ligands and terminal perfluoroolefin ligands. 
    more » « less
  3. The development of cost-effective, high-performance electrocatalysts for hydrogen evolution reaction (HER) is urgently needed. In the present study, a new type of HER catalyst was developed where ruthenium ions were embedded into the molecular skeletons of graphitic carbon nitride (C 3 N 4 ) nanosheets of 2.0 ± 0.4 nm in thickness by refluxing C 3 N 4 and RuCl 3 in water. This took advantage of the strong affinity of ruthenium ions to pyridinic nitrogen of the tri- s -triazine units of C 3 N 4 . The formation of C 3 N 4 –Ru nanocomposites was confirmed by optical and X-ray photoelectron spectroscopic measurements, which suggested charge transfer from the C 3 N 4 scaffold to the ruthenium centers. Significantly, the hybrid materials were readily dispersible in water and exhibited apparent electrocatalytic activity towards HER in acid and their activity increased with the loading of ruthenium metal centers in the C 3 N 4 matrix. Within the present experimental context, the sample saturated with ruthenium ion complexation at a ruthenium to pyridinic nitrogen atomic ratio of ca. 1 : 2 displayed the best performance, with an overpotential of only 140 mV to achieve the current density of 10 mA cm −2 , a low Tafel slope of 57 mV dec −1 , and a large exchange current density of 0.072 mA cm −2 . The activity was markedly lower when C 3 N 4 was embedded with other metal ions such as Fe 3+ , Co 3+ , Ni 3+ and Cu 2+ . This suggests minimal contributions from the C 3 N 4 nanosheets to the HER activity, and the activity was most likely due to the formation of Ru–N moieties where the synergistic interactions between the carbon nitride and ruthenium metal centers facilitated the adsorption of hydrogen. This was strongly supported by results from density functional theory calculations. 
    more » « less
  4. Photocatalytic reduction of carbon monoxide (CO), an increasingly available and low-cost feedstock that could benefit from CO 2 reduction, to high value-added multi-carbon chemicals, is significant for desirable carbon cycling, as well as high efficiency conversion and high density storage of solar energy. However, developing low cost but highly active photocatalysts with long-term stability for CO coupling and reduction remains a great challenge. Herein, by density functional theory (DFT) computations and taking advantage of the frustrated Lewis pairs (FLPs) concept, we identified a complex consisting of single boron (B) atom decorated on the optically active C 2 N monolayer ( i.e. , B/C 2 N) as an efficient and stable photocatalyst for CO reduction. On the designed B/C 2 N catalyst, CO can be efficiently reduced to ethylene (C 2 H 4 ) and propylene (C 3 H 6 ) both with a free energy increase of 0.22 eV for the potential-determining step, which greatly benefits from the pull–push function of the B–N FLPs composed of the decorating B atom and host N atoms. Moreover, the newly designed B/C 2 N catalyst shows significant visible light absorption with a suitable band position for CO reduction to C 2 H 4 and C 3 H 6 . All these unique features make the B/C 2 N photocatalyst an ideal candidate for visible light driven CO reduction to high value-added multi-carbon fuels and chemicals. 
    more » « less
  5. The gas-phase reaction of the methylidyne (CH; X 2 Π) radical with dimethylacetylene (CH 3 CCCH 3 ; X 1 A 1g ) was studied at a collision energy of 20.6 kJ mol −1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C 5 H 7 reaction intermediate(s) ultimately dissociating to C 5 H 6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon–carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon–hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively ‘screen’ the carbon–carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C 2 H 6 ) forming propylene (CH 3 C 2 H 3 ). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH 3 CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne – ethane system. 
    more » « less