skip to main content


Title: Out-of-class Activities: What Have We Been Doing and How We Can Change it for the Future
It is believed that if students are well engaged in the learning process within the classroom, they will continue the learning process independently outside the classroom. To facilitate such out-of-class learning, there is a plethora of traditional techniques with a variety of learning theoretical backgrounds. While out-of-class activities based on these techniques have shown to improve a student’s overall quality of learning, traditional activities lack the supervision, instant feedback, and personalization that the current generation of students expects. With the rising cost of college tuition, many of today’s students are working more hours outside of an educational setting and therefore need more supervision and encouragement than their predecessors. These factors make traditional out-of-class activities not effective to achieve the desired level of student learning and engagement outside the classroom. The faculty needs to rethink ways to redesign traditional out-of-class activities to make these activities more effective for this generation of students. This paper presents a review of the literature on and categorization of traditional out-of-class activities. The paper also discusses the results of a survey of what the faculty is doing to engage and continue student learning outside the classroom. Finally, the paper presents a new way of designing and delivering out-of-class activities that have the potential to increase student engagement with the help of instructional scaffolding, interactive activities, and personalization and adaptation.  more » « less
Award ID(s):
1712030
NSF-PAR ID:
10119331
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 14th International Conference on Computer Science & Education (ICCSE)
Page Range / eLocation ID:
714 to 719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Keeping students engaged with the course content outside the classroom is a challenging task. Since learning during undergraduate years occurs not only as student engagement in class, but also during out-of-class activities, we need to redesign and reinvent such activities for this and future generation of students. Although active learning has been used widely to improve in-class student learning and engagement, its usage outside the classroom is not widespread and researched. Active learning is often not utilized for out-of-class activities and traditional unsupervised activities are used mostly to keep students engaged in the content after they leave the classroom. Although there has been tremendous research performed to improve student learning and engagement in the classroom, there are a few pieces of researches on improving out-of-class learning and student engagement. This poster will present an approach to redesign the traditional out-of-class activities with the help of mobile apps, which are interactive and adaptive, and will provide personalization to satisfy student's needs outside the classroom so that optimal learning experience can be achieved. 
    more » « less
  2. This research to practice work in progress paper will present a mobile learning environment, called Dysgu (`learning' in Welsh), which will provide enhanced learning experience outside the classroom. The Dysgu environment provides students with interactive and motivating out-of-class activities and accommodates personalization and adaptation to satisfy students' specific needs. This system employs a novel approach by incorporating engaging factors, such as interactive activities, adaptive mobile technology, social networking, and gamification to overcome the shortcoming of traditional out-of-class activities. Dysgu allows personalization to support student's study needs and adapts to student behaviors, class dynamics, and difficulty of the out-of-class activity. By having a mobile interactive learning environment, faculty will be able to facilitate learning even after the students leave the classroom and intervene early when students fall behind their peers. 
    more » « less
  3. Keeping students engaged with the course contents between classes is challenging. Although out-of-class activities are used to address this challenge, they have limited impacts on improving student's engagement outside the classroom because of the lack of real-time feedback and progress updates. For this reason, these types of activities are less appealing to the current generation of students who feel the pull of instant gratification more intensely. This paper presents a mobile learning system, named Dysgu, which enables students to work on their out-of-class activities, compare their progress with the rest of the class, and improve their self-efficacy. The goal of Dysgu is to better engage students with out-of-class activities and reduce procrastination in those activities. By using Dysgu, faculty can facilitate and monitor learning even after the students leave the classroom and intervene early when students fall behind their peers. 
    more » « less
  4. Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods for promoting student learning, for increasing retention in academic programs, and for improving ability in professional practice is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. In this project we seek to propagate the Concept Warehouse, a technological innovation designed to foster concept-based active learning, into Mechanical Engineering (ME) and to study student learning with this tool in five diverse institutional settings. The Concept Warehouse (CW) is a web-based instructional tool that we developed for Chemical Engineering (ChE) faculty. It houses over 3,500 ConcepTests, which are short questions that can rapidly be deployed to engage students in concept-oriented thinking and/or to assess students’ conceptual knowledge, along with more extensive concept-based active learning tools. The CW has grown rapidly during this project and now has over 1,600 faculty accounts and over 37,000 student users. New ConcepTests were created during the current reporting period; the current numbers of questions for Statics, Dynamics, and Mechanics of Materials are 342, 410, and 41, respectively. A detailed review process is in progress, and will continue through the no-cost extension year, to refine question clarity and to identify types of new questions to fill gaps in content coverage. There have been 497 new faculty accounts created after June 30, 2018, and 3,035 unique students have answered these mechanics questions in the CW. We continue to analyze instructor interviews, focusing on 11 cases, all of whom participated in the CW Community of Practice (CoP). For six participants, we were able to compare use of the CW both before and after participating in professional development activities (workshops and/or a community or practice). Interview results have been coded and are currently being analyzed. To examine student learning, we recruited faculty to participate in deploying four common questions in both statics and dynamics. In statics, each instructor agreed to deploy the same four questions (one each for Rigid Body Equilibrium, Trusses, Frames, and Friction) among their overall deployments of the CW. In addition to answering the question, students were also asked to provide a written explanation to explain their reasoning, to rate the confidence of their answers, and to rate the degree to which the questions were clear and promoted deep thinking. The analysis to date has resulted in a Work-In-Progress paper presented at ASEE 2022, reporting a cross-case comparison of two instructors and a Work-In-Progress paper to be presented at ASEE 2023 analyzing students’ metacognitive reflections of concept questions. 
    more » « less
  5. This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes. 
    more » « less