skip to main content


Title: Systematic Literature Review of Students’ Affective Responses to Active Learning: Overview of Results
This full “research” paper presents an overview of results of a systematic literature review of students' affective responses to active learning in undergraduate STEM courses. We considered 2,364 abstracts of conference papers and journal articles published since 1990, and 412 studies met our inclusion criteria. The studies span the STEM disciplines and report various types of active learning. Their research designs include primarily quantitative methods (especially instructor-designed surveys and course evaluations), and they find that students’ affective responses are overwhelmingly positive. Few studies excelled on our quality score metric, and there few statistically significant differences by discipline (but biology studies and chemistry studies scored significantly higher in quality than electrical engineering studies). We include several possible directions for future work.  more » « less
Award ID(s):
1744407
NSF-PAR ID:
10120384
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE Frontiers in Education Conference
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the 2014 high-profile meta-analysis of undergraduate STEM courses, active learning has become a standard in higher education pedagogy. One way to provide active learning is through the flipped classroom. However, finding suitable pre-class learning activities to improve student preparation and the subsequent classroom environment, including student engagement, can present a challenge in the flipped modality. To address this challenge, adaptive learning lessons were developed for pre-class learning for a course in Numerical Methods. The lessons would then be used as part of a study to determine their cognitive and affective impacts. Before the study could be started, it involved constructing well-thought-out adaptive lessons. This paper discusses developing, refining, and revising the adaptive learning platform (ALP) lessons for pre-class learning in a Numerical Methods flipped course. In a prior pilot study at a large public southeastern university, the first author had developed ALP lessons for the pre-class learning for four (Nonlinear Equations, Matrix Algebra, Regression, Integration) of the eight topics covered in a Numerical Methods course. In the current follow-on study, the first author and two other instructors who teach Numerical Methods, one from a large southwestern urban university and another from an HBCU, collaborated on developing the adaptive lessons for the whole course. The work began in Fall 2020 by enumerating the various chapters and breaking each one into individual lessons. Each lesson would include five sections (introduction, learning objectives, video lectures, textbook content, assessment). The three instructors met semi-monthly to discuss the content that would form each lesson. The main discussion of the meetings centered on what a student would be expected to learn before coming to class, choosing appropriate content, agreeing on prerequisites, and choosing and making new assessment questions. Lessons were then created by the first author and his student team using a commercially available platform called RealizeIT. The content was tested by learning assistants and instructors. It is important to note that significant, if not all, parts of the content, such as videos and textbook material, were available through previously done work. The new adaptive lessons and the revised existing ones were completed in December 2020. The adaptive lessons were tested for implementation in Spring 2021 at the first author's university and made 15% of the students' grade calculation. Questions asked by students during office hours, on the LMS discussion board, and via emails while doing the lessons were used to update content, clarify questions, and revise hints offered by the platform. For example, all videos in the ALP lessons were updated to HD quality based on student feedback. In addition, comments from the end-of-semester surveys conducted by an independent assessment analyst were collated to revise the adaptive lessons further. Examples include changing the textbook content format from an embedded PDF file to HTML to improve quality and meet web accessibility standards. The paper walks the reader through the content of a typical lesson. It also shows the type of data collected by the adaptive learning platform via three examples of student interactions with a single lesson. 
    more » « less
  2. Since the 2014 high-profile meta-analysis of undergraduate STEM courses, active learning has become a standard in higher education pedagogy. One way to provide active learning is through the flipped classroom. However, finding suitable pre-class learning activities to improve student preparation and the subsequent classroom environment, including student engagement, can present a challenge in the flipped modality. To address this challenge, adaptive learning lessons were developed for pre-class learning for a course in Numerical Methods. The lessons would then be used as part of a study to determine their cognitive and affective impacts. Before the study could be started, it involved constructing well-thought-out adaptive lessons. This paper discusses developing, refining, and revising the adaptive learning platform (ALP) lessons for pre-class learning in a Numerical Methods flipped course. In a prior pilot study at a large public southeastern university, the first author had developed ALP lessons for the pre-class learning for four (Nonlinear Equations, Matrix Algebra, Regression, Integration) of the eight topics covered in a Numerical Methods course. In the current follow-on study, the first author and two other instructors who teach Numerical Methods, one from a large southwestern urban university and another from an HBCU, collaborated on developing the adaptive lessons for the whole course. The work began in Fall 2020 by enumerating the various chapters and breaking each one into individual lessons. Each lesson would include five sections (introduction, learning objectives, video lectures, textbook content, assessment). The three instructors met semi-monthly to discuss the content that would form each lesson. The main discussion of the meetings centered on what a student would be expected to learn before coming to class, choosing appropriate content, agreeing on prerequisites, and choosing and making new assessment questions. Lessons were then created by the first author and his student team using a commercially available platform called RealizeIT. The content was tested by learning assistants and instructors. It is important to note that significant, if not all, parts of the content, such as videos and textbook material, were available through previously done work. The new adaptive lessons and the revised existing ones were completed in December 2020. The adaptive lessons were tested for implementation in Spring 2021 at the first author's university and made 15% of the students' grade calculation. Questions asked by students during office hours, on the LMS discussion board, and via emails while doing the lessons were used to update content, clarify questions, and revise hints offered by the platform. For example, all videos in the ALP lessons were updated to HD quality based on student feedback. In addition, comments from the end-of-semester surveys conducted by an independent assessment analyst were collated to revise the adaptive lessons further. Examples include changing the textbook content format from an embedded PDF file to HTML to improve quality and meet web accessibility standards. The paper walks the reader through the content of a typical lesson. It also shows the type of data collected by the adaptive learning platform via three examples of student interactions with a single lesson. 
    more » « less
  3. his work-in-progress paper expands on a collaboration between engineering education researchers and machine learning researchers to automate the analysis of written responses to conceptually challenging questions in statics and dynamics courses (Authors, 2022). Using the Concept Warehouse (Koretsky et al., 2014), written justifications of ConcepTests (CTs) were gathered from statics and dynamics courses in a diverse set of two- and four-year institutions. Written justifications for CTs have been used to support active learning pedagogies which makes them important to investigate how students put together their problem-solving narratives of understanding. However, despite the large benefit that analysis of student written responses may provide to instructors and researchers, manual review of responses is cumbersome, limits analysis, and can be prone to human bias. In efforts to improve the analysis of student written responses, machine learning has been used in various educational contexts to analyze short and long texts (Burstein et al., 2020; Burstein et al., 2021). Natural Language Processing (NLP) uses transformer-based machine learning models (Brown et al., 2020; Raffel et al., 2019) which can be used through fine-tuning or in-context learning methods. NLP can be used to train algorithms that can automate the coding of written responses. Only a few studies for educational applications have leveraged transformer-based machine learning models further prompting an investigation into its use in STEM education. However, work in NLP has been criticized for heightening the possibility to perpetuate and even amplify harmful stereotypes and implicit biases (Chang et al., 2019; Mayfield et al., 2019). In this study, we detail the aim to use NLP for linguistic justice. Using methods like text summary, topic modeling, and text classification, we identify key aspects of student narratives of understanding in written responses to mechanics and statics CTs. Through this process, we seek to use machine learning to identify different ways students talk about a problem and their understanding at any point in their narrative formation process. Thus, we hope to help reduce human bias in the classroom and through technology by giving instructors and researchers a diverse set of narratives that include insight into their students’ histories, identities, and understanding. These can then be used towards connecting technological knowledge to students’ everyday lives. 
    more » « less
  4. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
    more » « less
  5. Multiple studies report the benefits of authentic research experiences in STEM education. While most of them focus either on course-based research projects or on undergraduate students’ experiences, few document authentic learning experiences unfolding in real time among and between graduate students in research laboratories. Therefore, we situate our study in the context of authentic research experiences in research laboratories and focus on documenting learning processes as they unfold during daily practices in the laboratories. Specifically, the goal of our study is to observe and document how graduate students, and other lab members, learn from one another within the cultural space of the laboratory, and what aspects of laboratory culture facilitate and what impede learning. To that end, we use cognitive ethnography, an ethnographic approach combined with cognitive science to study cognitive processes through participant-observation of two engineering research laboratories. We identified the following themes pertaining to learning experiences: scaffolding (structured activities or apprenticeship), peer-to-peer learning, self-directed and self-regulated learning, and independence in research activities. While in many respects the two laboratories are similar, the presence and role of a leader-mentor in daily activities is what set them apart. In this report, we analyze the impact of leadership-mentorship on learning and professional formation. We argue that the degree to which a leader-mentor is consistently active in the laboratory’s life presents advantages and disadvantages with respect to different aspects of learning and professional formation. On one hand, professional development of students may be hindered by the absence of direct oversight from an in-laboratory professional mentor, resulting in delayed graduation for example. On another, absence of direct oversight can compel students to independently seek out mentors who have important expertise to help complete projects in a timely manner, an important professional skill. In the first case, students benefit from the expertise of mentors, so having mentors consistently present in the laboratory helps students efficiently conduct their projects. In the second case, students learn that they cannot always rely on only one person to provide direction and will need to seek help from other quarters. 
    more » « less