skip to main content


Title: Band alignment of III-N, ZnO and II-IV-N2 semiconductors from the electron affinity rule
The natural band alignment between various II-IV-N$_2$ and III-N and ZnO semiconductors are determined by means of first-principles surface calculations of their electron affinities. While these ignore specific interface dipole formation and strain effects, they provide a first guidance to the construction of heterojunction devices involving this family of materials.  more » « less
Award ID(s):
1533957
NSF-PAR ID:
10120735
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
ISSN:
0022-3727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forests are a significant CO2sink. However, CO2sequestration in forests is radiatively offset by emissions of nitrous oxide (N2O), a potent greenhouse gas, from forest soils. Reforestation, an important strategy for mitigating climate change, has focused on maximizing CO2sequestration in plant biomass without integrating N2O emissions from soils. Although nitrogen (N)‐fixing trees are often recommended for reforestation because of their rapid growth on N‐poor soil, they can stimulate significant N2O emissions from soils. Here, we first used a field experiment to show that a N‐fixing tree (Robinia pseudoacacia) initially mitigated climate change more than a non‐fixing tree (Betula nigra). We then used our field data to parameterize a theoretical model to investigate these effects over time. Under lower N supply, N‐fixers continued to mitigate climate change more than non‐fixers by overcoming N limitation of plant growth. However, under higher N supply, N‐fixers ultimately mitigated climate change less than non‐fixers by enriching soil N and stimulating N2O emissions from soils. These results have implications for reforestation, suggesting that N‐fixing trees are more effective at mitigating climate change at lower N supply, whereas non‐fixing trees are more effective at mitigating climate change at higher N supply.

     
    more » « less
  2. The syntheses of (DIM)Ni(NO 3 ) 2 and (DIM)Ni(NO 2 ) 2 , where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin) 2 . Single deoxygenation of (DIM)Ni(NO 2 ) 2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ 1 -ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)] 2 , where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N 2 O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N 2 O is formed in a bimetallic Ni 2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)] 2 dimer is susceptible to oxidation by AgX (X = NO 3 − , NO 2 − , and OTf − ) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N 2 O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N 2 O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO − bridging ligand. 
    more » « less
  3. null (Ed.)
    Polymeric nitrogen (PN) belongs to a general family of materials containing all-nitrogen molecules or clusters. Although it is rare and challenging to synthesize PN members, they are attracting increasing scientific attention due to their high energy storage capacity and possible use as a green catalyst. A few theoretical calculations predicted the possible PN phases from N 2 gas, but they all require extremely high pressures and temperatures to synthesize. In this work, a practical way to synthesize N 8 polymeric nitrogen from an N 3 − precursor is elucidated using density functional theory calculations. The detailed mechanism, , is determined. The calculated energy barriers indicate that the first step is the rate-limiting step. This result guides us to rationally synthesize N 8 under UV (254 nm) irradiation, chosen based on the calculated absorption spectrum for the azide anion. As expected, UV irradiation enhances N 8 yields by nearly four times. This provides an interesting route to the scalable synthesis of high energy density N 8 compounds. 
    more » « less
  4. Joint photoelectron spectroscopy and first-principles theory investigations indicate that the Pb-doped PbB2(BO)nclusters (n= 0−2) undergo a transformation from σ + π doubly aromatic triangle PbB2to PbB4(BO)2−/0complexes with a B≡B triple bond.

     
    more » « less
  5. Understanding H 2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H 2 with protons and electrons. This work reports the first thermodynamic and kinetic H 2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al ( 1 ), Ga ( 2 ), and In ( 3 ), and L = [N( o -(NCH 2 P i Pr 2 )C 6 H 4 ) 3 ] 3− . Thermodynamic free energies (Δ G °) and free energies of activation (Δ G ‡ ) for binding equilibria were obtained via variable-temperature 31 P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H 2 and N 2 binding to Ni, with Δ G ° values for H 2 binding found to span nearly the entire range of previous reports. The non-classical H 2 adduct, (η 2 -H 2 )NiInL ( 3 -H 2 ), was structurally characterized by single-crystal neutron diffraction—the first such study for a Ni(η 2 -H 2 ) complex or any d 10 M(η 2 -H 2 ) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H 2 binding primarily occurs via H–H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M( iii ) dative interaction increases for the larger M( iii ) ions. Linear free-energy relationships are discussed, with the activation barrier for H 2 binding (Δ G ‡ ) found to decrease proportionally for more thermodynamically favorable equilibria. The Δ G ° values for H 2 and N 2 binding to NiML complexes were also found to be more exergonic for the larger M( iii ) ions. 
    more » « less