skip to main content

Title: Characterizing Interference Mitigation Techniques in Dense 60 GHz mmWave WLANs
Dense deployment of access points in 60 GHz WLANs can provide always-on gigabit connectivity and robustness against blockages to mobile clients. However, this dense deployment can lead to harmful interference between the links, affecting link data rates. In this paper, we attempt to better understand the interference characteristics and effectiveness of interference mitigation techniques using 802.11ad COTS devices and 60 GHz software radio based measurements. We first find that current 802.11ad COTS devices do not consider interference in sector selection, resulting in high interference and low spatial reuse. We consider three techniques of interference mitigation - channelization, sector selection and receive beamforming. First, our results show that channelization is effective but 60 GHz channels have non-negligible adjacent and non-adjacent channel interference. Second, we show that it is possible to perform interference-aware sector selection to reduce interference but its gains can be limited in indoor environment with reflections, and such sector selection should consider fairness in medium access and avoid asymmetric interference. Third, we characterize the efficacy of receive beamforming in combating interference and quantify the related overhead involved in the search for receive sector, especially in presence of blockages. We elaborate on the insights gained through the characterization and point more » out important outstanding problems through the study. « less
; ; ;
Award ID(s):
1815945 1730083
Publication Date:
Journal Name:
2019 28th International Conference on Computer Communication and Networks (ICCCN)
Page Range or eLocation-ID:
1 to 9
Sponsoring Org:
National Science Foundation
More Like this
  1. Millimeter-wave (mmWave) with large spectrum available is considered as the most promising frequency band for future wireless communications. The IEEE 802.11ad and IEEE 802.11ay operating on 60 GHz mmWave are the two most expected wireless local area network (WLAN) technologies for ultra-high-speed communications. For the IEEE 802.11ay standard still under development, there are plenty of proposals from companies and researchers who are involved with the IEEE 802.11ay task group. In this survey, we conduct a comprehensive review on the medium access control layer (MAC) related issues for the IEEE 802.11ay, some cross-layer between physical layer (PHY) and MAC technologies are also included. We start with MAC related technologies in the IEEE 802.11ad and discuss design challenges on mmWave communications, leading to some MAC related technologies for the IEEE 802.11ay. We then elaborate on important design issues for IEEE 802.11ay. Specifically, we review the channel bonding and aggregation for the IEEE 802.11ay, and point out the major differences between the two technologies. Then, we describe channel access and channel allocation in the IEEE 802.11ay, including spatial sharing and interference mitigation technologies. After that, we present an in-depth survey on beamforming training (BFT), beam tracking, single-user multiple-input-multiple-output (SU-MIMO) beamforming and multi-user multiple-input-multiple-outputmore »(MU-MIMO) beamforming. Finally, we discuss some open design issues and future research directions for mmWave WLANs. We hope that this paper provides a good introduction to this exciting research area for future wireless systems.« less
  2. An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »electronics boxes housing power, data acquisition and data processing components in water resistant compartments. A laptop computer with 8 TB of external storage and an independent Global Positioning System (GPS) antenna is used to run Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) software providing beamformed spectrogram data and live NAS data with capability of capturing several days of data. The acquisition system consists of Surface Mount Device (SMD) pre-amplifiers with filter to an analog differential pair shipboard COTS acquisition system. Pre-amplifiers are constructed using SMD technology where components are pressure tolerant and potting is not necessary. Potting of connectors, electronics and hydrophones via 3D printed molding techniques will be discussed. Array internal components are manufactured with Thermoplastic Polyurethane (TPU) 3D printed material to dampen array vibrations with forward and aft vibration isolation modules (VIM). Polyurethane foam (PUF) used to scatter breathing waves and dampen contact from wires inside the array without attenuating high frequencies and allowing for significant noise reduction. A single Tygon array section with a length of 7.5 m and diameter of 38 mm contains 8 transducer elements with a spacing of 75 cm (1 kHz design frequency). Pre- amplifiers and NAS modules are affixed using Vectran and steel wire rope positioned by swaged stops along the strength member. The tow cable length is 100 m with a diameter of 22 mm that is potted to a hose adapter to break out 12 braided copper wire twisted pair conductors and terminates the tow cable Vectran braid. This array in its current state of development is a low-cost alternative to obtain quality acoustic data from a towed array system. Used here for observation of whale vocalizations, this type of array also has many applications in military sonar and seismic surveying. Maintenance on the array can be performed without the use of special facilities or equipment for dehosing and conveniently uses castor oil as an environmentally safe pressure compensating and coupling fluid. Array development including selection of transducers, NAS modules, acoustic acquisition system, array materials and method of construction with results from several deployments will be discussed. We also present beamformed spectrograms containing humpback whale downsweep moans and underwater blowing (bubbles) sounds associated with feeding on sand lance (Ammodytes dubius).« less
  3. ABSTRACT Multi-user transmission at 60 GHz promises to increase the throughput of next generation WLANs via both analog and digital beamforming. To maximize capacity, analog beams need to be jointly configured with user selection and digital weights; however, joint maximization requires prohibitively large training and feedback overhead. In this paper, we scale multi-user 60 GHz WLAN throughput via design of a low-complexity structure for decoupling beam steering and user selection such that analog beam training precedes user selection. We introduce a two-class framework comprising (i) single shot selection of users by minimizing overlap of their idealized beam patterns obtained from analog training and (ii) interference-aware incremental addition of users via sequential training to better predict inter-user interference. We implement a programmable testbed using software defined radios and commercial 60 GHz transceivers and conduct over-the-air measurements to collect channel traces for different indoor WLAN deployments. Using trace based emulations and high resolution 60 GHz channel models, we show that our decoupling structure experiences less than 5% performance loss compared to maximum achievable rates via joint user-beam selection.
  4. null (Ed.)
    While millimeter-wave (mmWave) wireless has recently gained tremendous attention with the transition to 5G, developing a broadly accessible experimental infrastructure will allow the research community to make significant progress in this area. Hence, in this paper, we present the design and implementation of various programmable and open-access 28/60 GHz software-defined radios (SDRs), deployed in the PAWR COSMOS advanced wireless testbed. These programmable mmWave radios are based on the IBM 28 GHz 64-element dual-polarized phased array antenna module (PAAM) subsystem board and the Sivers IMA 60 GHz WiGig transceiver. These front ends are integrated with USRP SDRs or Xilinx RF-SoC boards, which provide baseband signal processing capabilities. Moreover, we present measurements of the TX/RX beamforming performance and example experiments (e.g., real-time channel sounding and RFNoC-based 802.11ad preamble detection), using the mmWave radios. Finally, we discuss ongoing enhancement and development efforts focusing on these radios.
  5. 60 GHz millimeter-wave WLANs are gaining traction with their ability to provide multi-gigabit per second data rates. In spite of their potential, link outages due to human body blockage remain a challenging outstanding problem. In this work, we propose mmChoir, a novel proactive blockage mitigation technique that utilizes joint transmissions from multiple Access Points (APs) to provide blockage resilience to clients. We derive a new reliability metric based on angular spread of incoming paths to a client and their blockage probabilities. The metric can be used to intelligently select joint transmissions that can provide higher reliability. The reliability metric along with a novel interference estimation model, is used by mmChoir's scheduler to judiciously schedule joint transmissions, and increase network capacity and reliability. Our testbed and trace-driven simulations show that mmChoir can outperform existing beamswitching based blockage mitigation scheme with on an average 58% higher network throughput.