Millimeter-wave (mmWave) with large spectrum available is considered as the most promising frequency band for future wireless communications. The IEEE 802.11ad and IEEE 802.11ay operating on 60 GHz mmWave are the two most expected wireless local area network (WLAN) technologies for ultra-high-speed communications. For the IEEE 802.11ay standard still under development, there are plenty of proposals from companies and researchers who are involved with the IEEE 802.11ay task group. In this survey, we conduct a comprehensive review on the medium access control layer (MAC) related issues for the IEEE 802.11ay, some cross-layer between physical layer (PHY) and MAC technologies are also included. We start with MAC related technologies in the IEEE 802.11ad and discuss design challenges on mmWave communications, leading to some MAC related technologies for the IEEE 802.11ay. We then elaborate on important design issues for IEEE 802.11ay. Specifically, we review the channel bonding and aggregation for the IEEE 802.11ay, and point out the major differences between the two technologies. Then, we describe channel access and channel allocation in the IEEE 802.11ay, including spatial sharing and interference mitigation technologies. After that, we present an in-depth survey on beamforming training (BFT), beam tracking, single-user multiple-input-multiple-output (SU-MIMO) beamforming and multi-user multiple-input-multiple-outputmore »
Characterizing Interference Mitigation Techniques in Dense 60 GHz mmWave WLANs
Dense deployment of access points in 60 GHz WLANs can provide always-on gigabit connectivity and robustness against blockages to mobile clients. However, this dense deployment can lead to harmful interference between the links, affecting link data rates. In this paper, we attempt to better understand the interference characteristics and effectiveness of interference mitigation techniques using 802.11ad COTS devices and 60 GHz software radio based measurements. We first find that current 802.11ad COTS devices do not consider interference in sector selection, resulting in high interference and low spatial reuse. We consider three techniques of interference mitigation - channelization, sector selection and receive beamforming. First, our results show that channelization is effective but 60 GHz channels have non-negligible adjacent and non-adjacent channel interference. Second, we show that it is possible to perform interference-aware sector selection to reduce interference but its gains can be limited in indoor environment with reflections, and such sector selection should consider fairness in medium access and avoid asymmetric interference. Third, we characterize the efficacy of receive beamforming in combating interference and quantify the related overhead involved in the search for receive sector, especially in presence of blockages. We elaborate on the insights gained through the characterization and point more »
- Publication Date:
- NSF-PAR ID:
- 10121017
- Journal Name:
- 2019 28th International Conference on Computer Communication and Networks (ICCCN)
- Page Range or eLocation-ID:
- 1 to 9
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »
-
ABSTRACT Multi-user transmission at 60 GHz promises to increase the throughput of next generation WLANs via both analog and digital beamforming. To maximize capacity, analog beams need to be jointly configured with user selection and digital weights; however, joint maximization requires prohibitively large training and feedback overhead. In this paper, we scale multi-user 60 GHz WLAN throughput via design of a low-complexity structure for decoupling beam steering and user selection such that analog beam training precedes user selection. We introduce a two-class framework comprising (i) single shot selection of users by minimizing overlap of their idealized beam patterns obtained from analog training and (ii) interference-aware incremental addition of users via sequential training to better predict inter-user interference. We implement a programmable testbed using software defined radios and commercial 60 GHz transceivers and conduct over-the-air measurements to collect channel traces for different indoor WLAN deployments. Using trace based emulations and high resolution 60 GHz channel models, we show that our decoupling structure experiences less than 5% performance loss compared to maximum achievable rates via joint user-beam selection.
-
null (Ed.)While millimeter-wave (mmWave) wireless has recently gained tremendous attention with the transition to 5G, developing a broadly accessible experimental infrastructure will allow the research community to make significant progress in this area. Hence, in this paper, we present the design and implementation of various programmable and open-access 28/60 GHz software-defined radios (SDRs), deployed in the PAWR COSMOS advanced wireless testbed. These programmable mmWave radios are based on the IBM 28 GHz 64-element dual-polarized phased array antenna module (PAAM) subsystem board and the Sivers IMA 60 GHz WiGig transceiver. These front ends are integrated with USRP SDRs or Xilinx RF-SoC boards, which provide baseband signal processing capabilities. Moreover, we present measurements of the TX/RX beamforming performance and example experiments (e.g., real-time channel sounding and RFNoC-based 802.11ad preamble detection), using the mmWave radios. Finally, we discuss ongoing enhancement and development efforts focusing on these radios.
-
60 GHz millimeter-wave WLANs are gaining traction with their ability to provide multi-gigabit per second data rates. In spite of their potential, link outages due to human body blockage remain a challenging outstanding problem. In this work, we propose mmChoir, a novel proactive blockage mitigation technique that utilizes joint transmissions from multiple Access Points (APs) to provide blockage resilience to clients. We derive a new reliability metric based on angular spread of incoming paths to a client and their blockage probabilities. The metric can be used to intelligently select joint transmissions that can provide higher reliability. The reliability metric along with a novel interference estimation model, is used by mmChoir's scheduler to judiciously schedule joint transmissions, and increase network capacity and reliability. Our testbed and trace-driven simulations show that mmChoir can outperform existing beamswitching based blockage mitigation scheme with on an average 58% higher network throughput.