skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Character Ratios for Exceptional Groups of Lie Type
Abstract We prove character ratio bounds for finite exceptional groups $G(q)$ of Lie type. These take the form $$\dfrac{|\chi (g)|}{\chi (1)} \le \dfrac{c}{q^k}$$ for all nontrivial irreducible characters $$\chi$$ and nonidentity elements $$g$$, where $$c$$ is an absolute constant, and $$k$$ is a positive integer. Applications are given to bounding mixing times for random walks on these groups and also diameters of their McKay graphs.  more » « less
Award ID(s):
1840702
PAR ID:
10121232
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider negative moments of quadratic Dirichlet $$L$$–functions over function fields. Summing over monic square-free polynomials of degree $2g+1$ in $$\mathbb{F}_{q}[x]$$, we obtain an asymptotic formula for the $$k^{\textrm{th}}$$ shifted negative moment of $$L(1/2+\beta ,\chi _{D})$$, in certain ranges of $$\beta $$ (e.g., when roughly $$\beta \gg \log g/g $$ and $k<1$). We also obtain non-trivial upper bounds for the $$k^{\textrm{th}}$$ shifted negative moment when $$\log (1/\beta ) \ll \log g$$. Previously, almost sharp upper bounds were obtained in [ 3] in the range $$\beta \gg g^{-\frac{1}{2k}+\epsilon }$$. 
    more » « less
  2. Abstract The deep theory of approximate subgroups establishes three-step product growth for subsets of finite simple groups $$G$$ of Lie type of bounded rank. In this paper, we obtain two-step growth results for representations of such groups $$G$$ (including those of unbounded rank), where products of subsets are replaced by tensor products of representations. Let $$G$$ be a finite simple group of Lie type and $$\chi $$ a character of $$G$$. Let $$|\chi |$$ denote the sum of the squares of the degrees of all (distinct) irreducible characters of $$G$$ that are constituents of $$\chi $$. We show that for all $$\delta>0$$, there exists $$\epsilon>0$$, independent of $$G$$, such that if $$\chi $$ is an irreducible character of $$G$$ satisfying $$|\chi | \le |G|^{1-\delta }$$, then $$|\chi ^2| \ge |\chi |^{1+\epsilon }$$. We also obtain results for reducible characters and establish faster growth in the case where $$|\chi | \le |G|^{\delta }$$. In another direction, we explore covering phenomena, namely situations where every irreducible character of $$G$$ occurs as a constituent of certain products of characters. For example, we prove that if $$|\chi _1| \cdots |\chi _m|$$ is a high enough power of $|G|$, then every irreducible character of $$G$$ appears in $$\chi _1\cdots \chi _m$$. Finally, we obtain growth results for compact semisimple Lie groups. 
    more » « less
  3. Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p ,  q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups. 
    more » « less
  4. Abstract For $$G=\textrm{GL}(n,q)$$, the proportion $$P_{n,q}$$ of pairs $$(\chi ,g)$$ in $$\textrm{Irr}(G)\times G$$ with $$\chi (g)\neq 0$$ satisfies $$P_{n,q}\to 0$$ as $$n\to \infty $$. 
    more » « less
  5. Abstract Theq-color Ramsey number of ak-uniform hypergraphG,  denotedr(G; q), is the minimum integerNsuch that any coloring of the edges of the completek-uniform hypergraph onNvertices contains a monochromatic copy ofG. The study of these numbers is one of the most central topics in combinatorics. One natural question, which for triangles goes back to the work of Schur in 1916, is to determine the behavior ofr(G; q) for fixedGandqtending to infinity. In this paper, we study this problem for 3-uniform hypergraphs and determine the tower height ofr(G; q) as a function ofq. More precisely, given a hypergraphG, we determine whenr(G; q) behaves polynomially, exponentially or double exponentially inq. This answers a question of Axenovich, Gyárfás, Liu and Mubayi. 
    more » « less