skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transient Dynamics of Epidemic Spreading and Its Mitigation on Large Networks
In this paper, we aim to understand the transient dynamics of a susceptible-infected (SI) epidemic spreading process on a large network. The SI model has been largely overlooked in the literature, while it is naturally a better fit for modeling the malware propagation in early times when patches/vaccines are not available, or over a wider range of timescales when massive patching is practically infeasible. Nonetheless, its analysis is simply non-trivial, as its important dynamics are all transient and the usual stability/steady-state analysis no longer applies. To this end, we develop a theoretical framework that allows us to obtain an accurate closed-form approximate solution to the original SI dynamics on any arbitrary network, which captures the temporal dynamics over all time and is tighter than the existing approximation, and also to provide a new interpretation via reliability theory. As its applications, we further develop vaccination policies with or without knowledge of already-infected nodes, to mitigate the future epidemic spreading to the extent possible, and demonstrate their effectiveness through numerical simulations.  more » « less
Award ID(s):
1824518
PAR ID:
10121292
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
(ACM MobiHoc'19) Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing
Page Range / eLocation ID:
191 to 200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an SIR epidemic model coupled with opinion dynamics to study an epidemic and opinions spreading in a network of communities. Our model couples networked SIR epidemic dynamics and opinions towards the severity of the epidemic. We develop an epidemic-opinion based threshold condition to capture the moment when a weighted average of the epidemic states starts to decrease exponentially fast over the network, namely the peak infection time. We define an effective reproduction number to characterize the behavior of the model through the peak infection time. We use both analytical and simulation-based results to illustrate that the opinions reflect the recovered levels within the communities after the epidemic dies out. 
    more » « less
  2. Lau, Eric HY (Ed.)
    The presence of heterogeneity in susceptibility, differences between hosts in their likelihood of becoming infected, can fundamentally alter disease dynamics and public health responses, for example, by changing the final epidemic size, the duration of an epidemic, and even the vaccination threshold required to achieve herd immunity. Yet, heterogeneity in susceptibility is notoriously difficult to detect and measure, especially early in an epidemic. Here we develop a method that can be used to detect and estimate heterogeneity in susceptibility given contact by using contact tracing data, which are typically collected early in the course of an outbreak. This approach provides the capability, given sufficient data, to estimate and account for the effects of this heterogeneity before they become apparent during an epidemic. It additionally provides the capability to analyze the wealth of contact tracing data available for previous epidemics and estimate heterogeneity in susceptibility for disease systems in which it has never been estimated previously. The premise of our approach is that highly susceptible individuals become infected more often than less susceptible individuals, and so individuals not infected after appearing in contact networks should be less susceptible than average. This change in susceptibility can be detected and quantified when individuals show up in a second contact network after not being infected in the first. To develop our method, we simulated contact tracing data from artificial populations with known levels of heterogeneity in susceptibility according to underlying discrete or continuous distributions of susceptibilities. We analyzed these data to determine the parameter space under which we are able to detect heterogeneity and the accuracy with which we are able to estimate it. We found that our power to detect heterogeneity increases with larger sample sizes, greater heterogeneity, and intermediate fractions of contacts becoming infected in the discrete case or greater fractions of contacts becoming infected in the continuous case. We also found that we are able to reliably estimate heterogeneity and disease dynamics. Ultimately, this means that contact tracing data alone are sufficient to detect and quantify heterogeneity in susceptibility. 
    more » « less
  3. We propose a mathematical model to study coupled epidemic and opinion dynamics in a network of communities. Our model captures SIS epidemic dynamics whose evolution is dependent on the opinions of the communities toward the epidemic, and vice versa. In particular, we allow both cooperative and antagonistic interactions, representing similar and opposing perspectives on the severity of the epidemic, respectively. We propose an Opinion-Dependent Reproduction Number to characterize the mutual influence between epidemic spreading and opinion dissemination over the networks. Through stability analysis of the equilibria, we explore the impact of opinions on both epidemic outbreak and eradication, characterized by bounds on the Opinion-Dependent Reproduction Number. We also show how to eradicate epidemics by reshaping the opinions, offering researchers an approach for designing control strategies to reach target audiences to ensure effective epidemic suppression. 
    more » « less
  4. Epidemic models are used across biological and social sciences, engineering, and computer science, and have had important impact in the study of the dynamics of human disease and computer viruses, but also trends rumors, viral videos, and most recently the spread of fake news on social networks. In this paper, we focus on epidemics propagating on a graph, as introduced by the seminal paper [5]. In particular, we consider so-called SI models (see below for a precise definition) where an infected node can only propagate the infection to its non-infected neighbor, as opposed to the fully mixed models considered in the early literature. This graph-based approach provides a more realistic model, in which the spread of the epidemic is determined by the connectivity of the graph, and accordingly some nodes may play a larger role than others in the spread of the infection. 
    more » « less
  5. Abstract The emergency generated by the current COVID-19 pandemic has claimed millions of lives worldwide. There have been multiple waves across the globe that emerged as a result of new variants, due to arising from unavoidable mutations. The existing network toolbox to study epidemic spreading cannot be readily adapted to the study of multiple, coexisting strains. In this context, particularly lacking are models that could elucidate re-infection with the same strain or a different strain—phenomena that we are seeing experiencing more and more with COVID-19. Here, we establish a novel mathematical model to study the simultaneous spreading of two strains over a class of temporal networks. We build on the classical susceptible–exposed–infectious–removed model, by incorporating additional states that account for infections and re-infections with multiple strains. The temporal network is based on the activity-driven network paradigm, which has emerged as a model of choice to study dynamic processes that unfold at a time scale comparable to the network evolution. We draw analytical insight from the dynamics of the stochastic network systems through a mean-field approach, which allows for characterizing the onset of different behavioral phenotypes (non-epidemic, epidemic, and endemic). To demonstrate the practical use of the model, we examine an intermittent stay-at-home containment strategy, in which a fraction of the population is randomly required to isolate for a fixed period of time. 
    more » « less