skip to main content


Title: Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands
Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.  more » « less
Award ID(s):
1832194
NSF-PAR ID:
10121463
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
26
ISSN:
0027-8424
Page Range / eLocation ID:
12883 to 12888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Free‐living nematodes are one of the most diverse metazoan taxa in terrestrial ecosystems and are critical to the global soil carbon (C) cycling through their role in organic matter decomposition. They are highly dependent on water availability for movement, feeding, and reproduction. Projected changes in precipitation across temporal and spatial scales will affect free‐living nematodes and their contribution to C cycling with unforeseen consequences. We experimentally reduced and increased growing season precipitation for 2 years in 120 field plots at arid, semiarid, and mesic grasslands and assessed precipitation controls on nematode genus diversity, community structure, and C footprint. Increasing annual precipitation reduced nematode diversity and evenness over time at all sites, but the mechanism behind these temporal responses differed for dry and moist grasslands. In arid and semiarid sites, there was a loss of drought‐adapted rare taxa with increasing precipitation, whereas in mesic conditions increases in the population of predaceous taxa with increasing precipitation may have caused the observed reductions in dominant colonizer taxa and yielded the negative precipitation–diversity relationship. The effects of temporal changes in precipitation on all aspects of the nematode C footprint (respiration, production, and biomass C) were all dependent on the site (significant spatial × temporal precipitation interaction) and consistent with diversity responses at mesic, but not at arid and semiarid, grasslands. These results suggest that free‐living nematode biodiversity and their C footprint will respond to climate change‐driven shifts in water availability and that more frequent extreme wet years may accelerate decomposition and C turnover in semiarid and arid grasslands.

     
    more » « less
  2. The varied topography and large elevation gradients that characterize the arid and semi-arid Southwest create a wide range of climatic conditions - and associated biomes - within relatively short distances. This creates an ideal experimental system in which to study the effects of climate on ecosystems. Such studies are critical given that the Southwestern U.S. has already experienced changes in climate that have altered precipitation patterns (Mote et al. 2005), and stands to experience dramatic climate change in the coming decades (Seager et al. 2007; Ting et al. 2007). Climate models currently predict an imminent transition to a warmer, more arid climate in the Southwest (Seager et al. 2007; Ting et al. 2007). Thus, high elevation ecosystems, which currently experience relatively cool and mesic climates, will likely resemble their lower elevation counterparts, which experience a hotter and drier climate. In order to predict regional changes in carbon storage, hydrologic partitioning and water resources in response to these potential shifts, it is critical to understand how both temperature and soil moisture affect processes such as evaportranspiration (ET), total carbon uptake through gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange of carbon, water and energy across elevational gradients. We are using a sequence of six widespread biomes along an elevational gradient in New Mexico -- ranging from hot, arid ecosystems at low elevations to cool, mesic ecosystems at high elevation to test specific hypotheses related to how climatic controls over ecosystem processes change across this gradient. We have an eddy covariance tower and associated meteorological instruments in each biome which we are using to directly measure the exchange of carbon, water and energy between the ecosystem and the atmosphere. This gradient offers us a unique opportunity to test the interactive effects of temperature and soil moisture on ecosystem processes, as temperature decreases and soil moisture increases markedly along the gradient and varies through time within sites. This dataset examines how different stages of burn affects above-ground biomass production (ANPP) in a mixed desert-grassland. Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and foliage, over time and incorporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV292, "Flux Tower Seasonal Biomass and Seasonal and Annual NPP Data." 
    more » « less
  3. Abstract

    The fraction of primary productivity allocated below‐ground accounts for a larger flow of carbon than above‐ground productivity in most grassland ecosystems. Here, we addressed the question of how root herbivory affects below‐ground allocation of a dominant shortgrass prairie grass in response to water availability. We predicted that high levels of root herbivory by nematodes, as seen under extreme drought in sub‐humid grasslands, would prevent the high allocation to root biomass normally expected in response to low water availability.

    We exposed blue gramaBouteloua gracilis, which accounts for most of the net primary productivity in the shortgrass steppe of the central and southern Great Plains, to three levels of water availability from extreme low to intermediate and extreme high crossed with a gradient of root­herbivore per cent abundance relative to the total nematode community in soil microcosms.

    As hypothesized, the effect of water availability on below‐ground biomass allocation was contingent on the proportion of root herbivores in the nematode community. The relationship between below‐ground biomass allocation and water availability was negative in the absence of root herbivory, but tended to reverse with increasing abundance of root feeders. Increasing abundance of root‐feeding nematodes prevented grasses from adjusting their allocation patterns towards root mass that would, in turn, increase water uptake under dry conditions. Therefore, below‐ground trophic interactions weakened plant responses and increased the negative effects of drought on plants.

    Our work suggests that plant responses to changes in precipitation result from complex interactions between the direct effect of precipitation and indirect effects through changes in the below‐ground trophic web. Such complex responses challenge current predictions of increasing plant biomass allocation below‐ground in water‐stressed grasslands, and deserve further investigation across ecosystems and in field conditions.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 ×  higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems. 
    more » « less
  5. Abstract

    Grasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system’s sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system’s resilience in the face of drought. Here, we examine the effects of experimental nutrient fertilization and the resulting diversity loss on the resistance to and recovery from severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, five annual grasslands in California, and eight perennial grasslands in the Great Plains. We measured rate of resistance as the change in annual aboveground biomass (ANPP) per unit change in growing season precipitation as conditions declined from normal to drought. We measured recovery as the change in ANPP during the postdrought period and the return to normal precipitation. Resistance and recovery did not vary across the 400‐mm range of mean growing season precipitation spanned by our sites in the Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistance and increased drought recovery. In the California annual grasslands, arid sites had a greater recovery postdrought than mesic sites, and nutrient addition had no consistent effects on resistance or recovery. Across all study sites, we found that predrought species richness in natural grasslands was not consistently associated with rates of resistance to or recovery from the drought, in contrast to earlier findings from experimentally assembled grassland communities. Taken together, these results suggest that human‐induced eutrophication may destabilize grassland primary production, but the effects of this may vary across regions and flora, especially between perennial and annual‐dominated grasslands.

     
    more » « less