Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity.
more »
« less
Root herbivory controls the effects of water availability on the partitioning between above‐ and below‐ground grass biomass
Abstract The fraction of primary productivity allocated below‐ground accounts for a larger flow of carbon than above‐ground productivity in most grassland ecosystems. Here, we addressed the question of how root herbivory affects below‐ground allocation of a dominant shortgrass prairie grass in response to water availability. We predicted that high levels of root herbivory by nematodes, as seen under extreme drought in sub‐humid grasslands, would prevent the high allocation to root biomass normally expected in response to low water availability.We exposed blue gramaBouteloua gracilis, which accounts for most of the net primary productivity in the shortgrass steppe of the central and southern Great Plains, to three levels of water availability from extreme low to intermediate and extreme high crossed with a gradient of rootherbivore per cent abundance relative to the total nematode community in soil microcosms.As hypothesized, the effect of water availability on below‐ground biomass allocation was contingent on the proportion of root herbivores in the nematode community. The relationship between below‐ground biomass allocation and water availability was negative in the absence of root herbivory, but tended to reverse with increasing abundance of root feeders. Increasing abundance of root‐feeding nematodes prevented grasses from adjusting their allocation patterns towards root mass that would, in turn, increase water uptake under dry conditions. Therefore, below‐ground trophic interactions weakened plant responses and increased the negative effects of drought on plants.Our work suggests that plant responses to changes in precipitation result from complex interactions between the direct effect of precipitation and indirect effects through changes in the below‐ground trophic web. Such complex responses challenge current predictions of increasing plant biomass allocation below‐ground in water‐stressed grasslands, and deserve further investigation across ecosystems and in field conditions. A freePlain Language Summarycan be found within the Supporting Information of this article.
more »
« less
- Award ID(s):
- 1832194
- PAR ID:
- 10452068
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 34
- Issue:
- 11
- ISSN:
- 0269-8463
- Format(s):
- Medium: X Size: p. 2403-2410
- Size(s):
- p. 2403-2410
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Roots are essential to the diversity and functioning of plant communities, but trade‐offs in rooting strategies are still poorly understood.We evaluated existing frameworks of rooting strategy trade‐offs and tested their underlying assumptions, guided by the hypothesis that community‐level rooting strategies are best described by a combination of variation in organ‐level traits, plant‐level root:shoot allocation and symbiosis‐level mycorrhizal dependency. We tested this hypothesis using data on plant community structure, above‐ and below‐ground biomass, eight root traits including mycorrhizal colonisation and soil properties from an edaphic gradient driven by elevation and water availability in sandhills prairie, Nebraska, USA.We found multidimensional trade‐offs in rooting strategies represented by a two‐way productivity‐durability trade‐off axis (captured by root length density and root dry matter content) and a three‐way resource acquisition trade‐off between specific root length, root:shoot mass ratio and mycorrhizal dependence. Variation in rooting strategies was driven to similar extents by interspecific differences and intraspecific responses to soil properties.Organ‐level traits alone were insufficient to capture community‐level trade‐offs in rooting strategies across the edaphic gradient. Instead, trait variation encompassing organ, plant and symbiosis levels revealed that consideration of whole‐plant phenotypic integration is essential to defining multidimensional trade‐offs shaping the functional variation of root systems. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Plants allocate biomass to different organs in response to resource variation for maximizing performance, yet we lack a framework that adequately integrates plant responses to the simultaneous variation in above‐ and below‐ground resources. Although traditionally, the optimal partition theory (OPT) has explained patterns of biomass allocation in response to a single limiting resource, it is well‐known that in natural communities multiple resources limit growth. We study trade‐offs involved in plant biomass allocation patterns and their effects on plant growth under variable below‐ and above‐ground resources—light, soil N and P—for seedling communities.We collected information on leaf, stem and root mass fractions for more than 1,900 seedlings of 97 species paired with growth data and local‐scale variation in abiotic resources from a tropical forest in China.We identified two trade‐off axes that define the mass allocation strategies for seedlings—allocation to photosynthetic versus non‐photosynthetic tissues and allocation to roots over stems—that responded to the variation in soil P and N and light. Yet, the allocation patterns did not always follow predictions of OPT in which plants should allocate biomass to the organ that acquires the most limiting resource. Limited soil N resulted in high allocation to leaves at the expense of non‐photosynthetic tissues, while the opposite trend was found in response to limited soil P. Also, co‐limitation in above‐ and below‐ground resources (light and soil P) led to mass allocation to stems at the expense of roots. Finally, we found that growth increased under high‐light availability and soil P for seedlings that invested more in photosynthetic over non‐photosynthetic tissues or/and that allocated mass to roots at the expense of stem.Synthesis. Biomass allocation patterns to above‐ and below‐ground tissues are described by two independent trade‐offs that allow plants to have divergent allocation strategies (e.g. high root allocation at the expense of stem or high leaf allocation at the expense of allocation to non‐photosynthetic tissues) and enhance growth under different limiting resources. Identifying the trade‐offs driving biomass allocation is important to disentangle plant responses to the simultaneous variation in resources in diverse forest communities.more » « less
-
Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslandsPrecipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.more » « less
-
Abstract Asexual reproduction plays a fundamental role in the structure, dynamics and persistence of perennial grasslands. Thus, assessing how asexual reproductive traits of plant communities respond to drought may be key for understanding grassland resistance to drought and recovery following drought.Here, we quantified three asexual reproductive traits (i.e. above‐ground tiller abundance, below‐ground bud abundance and the ratio of tillers to buds) during a 4‐year severe drought and a 2‐year drought recovery period in four grasslands that spanned an aridity gradient in northern China. We also assessed the relationship between these traits and the resistance and recovery of above‐ground net primary productivity (ANPP).We found that drought had limited and largely inconsistent effects on asexual reproduction among drought and recovery years and grasslands overall. Drought increased tiller abundance in the first treatment year and reduced bud banks by the fourth treatment year across grasslands. However, neither of the three asexual reproductive traits were correlated with drought resistance of ANPP. Drought legacies differed among the four grasslands with positive, negative and no legacies evident for the three asexual reproductive traits, and no clear relationship with aridity. Bud banks and tiller to bud ratio decreased and increased, respectively, in the first recovery year, but not in the second recovery year. In contrast to drought resistance, community bud abundance was strongly related to recovery, such that communities with higher bud abundance had greater ANPP recovery following drought.Synthesis. These results suggest that asexual reproductive traits may be important drivers of ecosystem recovery after drought, but that variable responses of these asexual reproduction traits during drought complicates predictions of overall grassland responses.more » « less
An official website of the United States government
