skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CEO: A Triangulated Evaluation of a Modeling-Based CT-Infused CS Activity for Non-CS Middle Grade Students
With the increased demand for introducing computational thinking (CT) in K-12 classrooms, educational researchers are developing integrated lesson plans that can teach CT fundamentals in non- computing specific classrooms. Although these lessons reach more students through the core curriculum, proper evaluation methods are needed to ensure the quality of the design and integration. As part of a research practice partnership, we work to infuse research- backed curricula into science courses. We find a three-pronged approach of evaluation can help us make better decisions on how to improve experimental curricula for active classrooms. This CEO model uses three data sources (student code traces, exit ticket responses, and field observations) as a triangulated approach that can be used to identify programming behavior among novice developers, preferred task ordering for the assignment, and scaffolding recommendations to teachers. This approach allows us to evaluate the practical implementations of our initiative and create a focused approach for designing more effective lessons.  more » « less
Award ID(s):
1837439 1640141
PAR ID:
10122992
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 1st ACM Global Computing Education Conference
Page Range / eLocation ID:
58 to 64
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the recent proliferation of research concerning integrating computational thinking (CT) into K-5th grade curriculum, there is little literature concerning how to evaluate the quality of CT integrated curricula, especially curricula integrating CT into language arts and social studies content areas. In this paper, we present a theoretically derived rubric for the evaluation of CT integrated curricula for grades K-5 across the curriculum (math, science, language arts, social studies). Our rubric is divided into two sections. The first section provides guidelines for identifying the integration type (disciplinary, multidisciplinary, interdisciplinary, or transdisciplinary). The second section presents six categories of evaluation that further subsume nine sub-categories. The principal categories of evaluation include the following: conceptual coherence, role of computational technology, assessment, use of multiple representations, play, and equity. We include the play category as an aspect of developmental appropriateness. Play is an important pedagogical approach for learning in the early grades. Our work takes place in the context of the Computer Science (CS) for All initiative in the United States which emphasizes the goal of improving racial and gender diversity in CS participation. Therefore, creating integrated lessons that address equity is important. Our paper describes rubric development from the theoretical perspectives that underlie the inclusion of each type, category, and sub-category. Our evaluative rubric can guide future efforts to integrate CT/CS into the elementary curricula. Researchers can utilize our rubric to evaluate and analyze CT-integrated curricula, and educators can benefit from using this rubric as a guideline for curriculum development. 
    more » « less
  2. Despite increasing attention to the potential benefits of infusing computational thinking into content area classrooms, more research is needed to examine how teachers integrate disciplinary content and CT as part of their pedagogical practices. This study traces how middle and high school teachers (n = 24) drew on their existing knowledge and their experiences in a STEM professional development program to infuse CT into their teaching. Our work is grounded in theories of TPACK and TPACK-CT, which leverage teachers’ knowledge of technology for computational thinking (CT), CT as a disciplinary pedagogical practice, and STEM content knowledge. Findings identify three key pedagogical supports that teachers utilized and transformed as they taught CT-infused lessons (articulating a key purpose for CT infusion, scaffolding, and collaborative contexts), as well as barriers that caused teachers to adapt or abandon their lessons. Implications include suggestions for future research on CT infusion into secondary classrooms, as well as broader recommendations to support teachers in applying STEM professional development content to classroom practice. 
    more » « less
  3. Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms. 
    more » « less
  4. Abstract Increasing access to computational ideas and practices is one important reason to integrate computational thinking (CT) in science classrooms. While integrating CT into science classrooms broadens exposure to computing, it may not be enough to ensure equitable participation in the science classroom. Equitable participation is crucial because providing students with an environment in which they are able to fully engage and participate in science and computing practices empowers students to learn and continue pursuing CT and science. To foreground equitable participation in CT‐integrated curricula, we undertook a research project in which researchers and teachers examined teacher conceptualizations of equitable participation and how teachers design for equitable participation by modifying a lesson that introduces computational modeling in science. The following research questions guided the study: (1) What are teachers' conceptualizations of equitable participation? (2) How do teachers design for equitable participation through co‐design of a CT‐integrated unit? Our findings suggest that teachers conceptualized and designed for equitable participation in the context of a CT‐integrated curriculum across three primary dimensions: accessibility, inclusion, and relevancy. Our contributions to the field of science teaching and learning are twofold: (1) obtaining an initial understanding of how teachers think about and design for equitable participation is crucial in order to support teachers in their pursuit of creating equitable learning experiences for CT and science learners, and (2) our findings show that we can study teacher conceptualizations and their design choices by examining specific modifications to a CT‐integrated science curriculum. Implications are discussed. 
    more » « less
  5. The dearth of women and people of color in the field of computer science is a well-documented phenomenon. Following Obama's 2016 declaration of the need for a nationwide CS for All movement in the US, educators, school districts, states and the US-based National Science Foundation have responded with an explosion of activity directed at developing computer science learning opportunities in K-12 settings. A major component of this effort is the creation of equitable CS learning opportunities for underrepresented populations. As a result, there exists a strong need for educational research on the development of equity-based theory and practice in CS education. This poster session reports on a work-in-progress study that uses a case study approach to engage twenty in-service elementary school teachers in reflecting on issues of equity in CS education as part of a three-day CS professional development workshop. Our work is unfolding in the context of a four-year university/district research practice partnership in a mid-sized city in the Northeastern United States. Teachers in our project are working to co-design integrated CS curriculum units for K-5 classrooms. We developed four case studies, drawn from the first year of our project, that highlight equity challenges teachers faced in the classroom when implementing the CS lessons. The case studies follow the "Teacher Moments" template created by the Teaching Systems Lab in Open Learning at MIT. The case study activity is meant to deepen reflection and discussion on how to create equitable learning opportunities for elementary school students. We present preliminary findings. 
    more » « less