skip to main content


Title: ShareAR: Communication-Efficient Multi-User Mobile Augmented Reality
Augmented reality is an emerging application on mobile devices. However, there is a lack of understanding of the communication requirements and challenges of multi-user AR scenarios. In this position paper, we propose several important research issues that need to be addressed for low-latency, accurate shared AR experiences: (a) Systems tradeoffs of AR communication architectures used today in mobile AR platforms; (b) Understanding AR communication patterns and adapting the AR application layer to dynamically changing network conditions; and (c) Tools and methodologies to evaluate AR quality of experience in real time on mobile devices. We present preliminary measurements of off-the-shelf mobile AR platforms as well as results from our AR system, ShareAR, illustrating performance tradeoffs and indicating promising new research directions.  more » « less
Award ID(s):
1817216 1903136
NSF-PAR ID:
10123001
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM HotNets
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data-intensive applications in diverse domains, including video streaming, gaming, and health monitoring, increasingly require that mobile devices directly share data with each other. However, developing distributed data sharing functionality introduces low-level, brittle, and hard-to-maintain code into the mobile codebase. To reconcile the goals of programming convenience and performance efficiency, we present a novel middleware framework that enhances the Android platform's component model to support seamless and efficient inter-device data sharing. Our framework provides a familiar programming interface that extends the ubiquitous Android Inter-Component Communication (ICC), thus lowering the learning curve. Unlike middleware platforms based on the RPC paradigm, our programming abstractions require that mobile application developers think through and express explicitly data transmission patterns, thus treating latency as a first-class design concern. Our performance evaluation shows that using our framework incurs little performance overhead, comparable to that of custom-built implementations. By providing reusable programming abstractions that preserve component encapsulation, our framework enables Android devices to efficiently share data at the component level, providing powerful building blocks for the development of emerging distributed mobile applications. 
    more » « less
  2. Mobile devices supporting the "Internet of Things" (IoT), often have limited capabilities in computation, battery energy, and storage space, especially to support resource-intensive applications involving virtual reality (VR), augmented reality (AR), multimedia delivery and artificial intelligence (AI), which could require broad bandwidth, low response latency and large computational power. Edge cloud or edge computing is an emerging topic and technology that can tackle the deficiency of the currently centralized-only cloud computing model and move the computation and storage resource closer to the devices in support of the above-mentioned applications. To make this happen, efficient coordination mechanisms and “offloading” algorithms are needed to allow the mobile devices and the edge cloud to work together smoothly. In this survey paper, we investigate the key issues, methods, and various state-of-the-art efforts related to the offloading problem. We adopt a new characterizing model to study the whole process of offloading from mobile devices to the edge cloud. Through comprehensive discussions, we aim to draw an overall “big picture” on the existing efforts and research directions. Our study also indicates that the offloading algorithms in edge cloud have demonstrated profound potentials for future technology and application development. 
    more » « less
  3. Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth. 
    more » « less
  4. Robust pervasive context-aware augmented reality (AR) has the potential to enable a range of applications that support users in reaching their personal and professional goals. In such applications, AR can be used to deliver richer, more immersive, and more timely just in time adaptive interventions (JITAI) than conventional mobile solutions, leading to more effective support of the user. This position paper defines a research agenda centered on improving AR applications' environmental, user, and social context awareness. Specifically, we argue for two key architectural approaches that will allow pushing AR context awareness to the next level: use of wearable and Internet of Things (IoT) devices as additional data streams that complement the data captured by the AR devices, and the development of edge computing-based mechanisms for enriching existing scene understanding and simultaneous localization and mapping (SLAM) algorithms. The paper outlines a collection of specific research directions in the development of such architectures and in the design of next-generation environmental, user, and social context awareness algorithms. 
    more » « less
  5. This article discusses novel research methods used to examine how Augmented Reality (AR) can be utilized to present “omic” (i.e., genomes, microbiomes, pathogens, allergens) information to non-expert users. While existing research shows the potential of AR as a tool for personal health, methodological challenges pose a barrier to the ways in which AR research can be conducted. There is a growing need for new evaluation methods for AR systems, especially as remote testing becomes increasingly popular. In this article, we present two AR studies adapted for remote research environments in the context of personal health. The first study ( n = 355) is a non-moderated remote study conducted using an AR web application to explore the effect of layering abstracted pathogens and mitigative behaviors on a user, on perceived risk perceptions, negative affect, and behavioral intentions. This study introduces methods that address participant precursor requirements, diversity of platforms for delivering the AR intervention, unsupervised setups, and verification of participation as instructed. The second study ( n = 9) presents the design and moderated remote evaluation of a technology probe, a prototype of a novel AR tool that overlays simulated timely and actionable environmental omic data in participants' living environment, which helps users to contextualize and make sense of the data. Overall, the two studies contribute to the understanding of investigating AR as a tool for health behavior and interventions for remote, at-home, empirical studies. 
    more » « less