skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth of the Eigensolutions of Laplacians on Riemannian Manifolds I: Construction of Energy Function
Abstract In this paper, we consider the eigensolutions of $$-\Delta u+ Vu=\lambda u$$, where $$\Delta $$ is the Laplacian on a non-compact complete Riemannian manifold. We develop Kato’s methods on manifold and establish the growth of the eigensolutions as r goes to infinity based on the asymptotical behaviors of $$\Delta r$$ and V (x), where r = r(x) is the distance function on the manifold. As applications, we prove several criteria of absence of eigenvalues of Laplacian, including a new proof of the absence of eigenvalues embedded into the essential spectra of free Laplacian if the radial curvature of the manifold satisfies $$ K_{\textrm{rad}}(r)= -1+\frac{o(1)}{r}$$.  more » « less
Award ID(s):
1700314
PAR ID:
10188091
Author(s) / Creator(s):
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2020
Issue:
9
ISSN:
1073-7928
Page Range / eLocation ID:
2561 to 2587
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We obtain new quantitative estimates on Weyl Law remainders under dynamical assumptions on the geodesic flow. On a smooth compact Riemannian manifold ( M ,  g ) of dimension n , let $$\Pi _\lambda $$ Π λ denote the kernel of the spectral projector for the Laplacian, $$\mathbb {1}_{[0,\lambda ^2]}(-\Delta _g)$$ 1 [ 0 , λ 2 ] ( - Δ g ) . Assuming only that the set of near periodic geodesics over $${W}\subset M$$ W ⊂ M has small measure, we prove that as $$\lambda \rightarrow \infty $$ λ → ∞ $$\begin{aligned} \int _{{W}} \Pi _\lambda (x,x)dx=(2\pi )^{-n}{{\,\textrm{vol}\,}}_{_{{\mathbb {R}}^n}}\!(B){{\,\textrm{vol}\,}}_g({W})\,\lambda ^n+O\Big (\frac{\lambda ^{n-1}}{\log \lambda }\Big ), \end{aligned}$$ ∫ W Π λ ( x , x ) d x = ( 2 π ) - n vol R n ( B ) vol g ( W ) λ n + O ( λ n - 1 log λ ) , where B is the unit ball. One consequence of this result is that the improved remainder holds on all product manifolds, in particular giving improved estimates for the eigenvalue counting function in the product setup. Our results also include logarithmic gains on asymptotics for the off-diagonal spectral projector $$\Pi _\lambda (x,y)$$ Π λ ( x , y ) under the assumption that the set of geodesics that pass near both x and y has small measure, and quantitative improvements for Kuznecov sums under non-looping type assumptions. The key technique used in our study of the spectral projector is that of geodesic beams. 
    more » « less
  2. Abstract: We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $$\Bbb{R}^3$$. A solitary wave solution is given by $Q(x-t,y,z)$, where $$Q$$ is the ground state solution to $$-Q+\Delta Q+Q^2=0$$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $$Q$$ in the energy space, evolves to a solution that, as $$t\to\infty$$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $$x>\delta t-\tan\theta\sqrt{y^2+z^2}$$ for $$0\leq\theta\leq{\pi\over 3}-\delta$$. 
    more » « less
  3. abstract: In the past years, there has been a new light shed on the harmonic map problem with free boundary in view of its connection with nonlocal equations. Here we fully exploit this link, considering the harmonic map flow with free boundary $$ (0.1)\hskip77pt\cases{u_t=\Delta u& in $$\Bbb{R}^2_+\times (0,T)$$,\cr u(x,0,t)\in\Bbb{S}^1& for all $$(x,0,t)\in\partial\Bbb{R}^2_+\times (0,T)$$,\cr {du\over dy}(x,0,t)\perp T_{u(x,0,t)}\Bbb{S}^1& for all $$(x,0,t)\in\partial\Bbb{R}^2_+\times (0,T)$$,\cr u(\cdot, 0)=u_0& in $$\Bbb{R}^2_+$} $$ for a function $$u:\Bbb{R}^2_+\times [0,T)\to\Bbb{R}^2$$. Here $$u_0 :\Bbb{R}^2_+\to\Bbb{R}^2$$ is a given smooth map and $$\perp$$ stands for orthogonality. We prove the existence of initial data $$u_0$$ such that (0.1) blows up at finite time with a profile being the half-harmonic map. This answers a question raised by Chen and Lin. 
    more » « less
  4. We prove local Lipschitz regularity for weak solutions to a class of degenerate parabolic PDEs modeled on the parabolic p-Laplacian $$\(\partial_t u= \sum_{i=1}^{2n} X_i (|\nabla_0 u|^{p-2} X_i u),\$$ in a cylinder $$\(\Omega\times\mathbb{R}^+\)$$, where $$ \(\Omega\)$$ is domain in the Heisenberg group $$\(\mathbb{H}^n\)$$, and $$\(2\le p \le 4\)$$. The result continues to hold in the more general setting of contact subRiemannian manifolds. 
    more » « less
  5. abstract: The finite-rank Lieb-Thirring inequality provides an estimate on a Riesz sum of the $$N$$ lowest eigenvalues of a Schr\odinger operator $$-\Delta-V(x)$ in terms of an $$L^p(\mathbb{R}^d)$$ norm of the potential $$V$$. We prove here the existence of an optimizing potential for each $$N$$, discuss its qualitative properties and the Euler--Lagrange equation (which is a system of coupled nonlinear Schr\odinger equations) and study in detail the behavior of optimizing sequences. In particular, under the condition $$\gamma>\max\{0,2-d/2\}$ on the Riesz exponent in the inequality, we prove the compactness of all the optimizing sequences up to translations. We also show that the optimal Lieb-Thirring constant cannot be stationary in $$N$$, which sheds a new light on a conjecture of Lieb-Thirring. In dimension $d=1$ at $$\gamma=3/2$$, we show that the optimizers with $$N$$ negative eigenvalues are exactly the Korteweg-de Vries $$N$$-solitons and that optimizing sequences must approach the corresponding manifold. Our work also covers the critical case $$\gamma=0$$ in dimension $$d\geq3$$ (Cwikel-Lieb-Rozenblum inequality) for which we exhibit and use a link with invariants of the Yamabe problem. 
    more » « less