e. With recent advances in online sensing technology and high-performance computing, structural health monitoring (SHM) has begun to emerge as an automated approach to the real-time conditional monitoring of civil infrastructure. Ideal SHM strategies detect and characterize damage by leveraging measured response data to update physics-based finite element models (FEMs). When monitoring composite structures, such as reinforced concrete (RC) bridges, the reliability of FEM based SHM is adversely affected by material, boundary, geometric, and other model uncertainties. Civil engineering researchers have adapted popular artificial intelligence (AI) techniques to overcome these limitations, as AI has an innate ability to solve complex and ill-defined problems by leveraging advanced machine learning techniques to rapidly analyze experimental data. In this vein, this study employs a novel Bayesian estimation technique to update a coupled vehicle-bridge FEM for the purposes of SHM. Unlike existing AI based techniques, the proposed approach makes intelligent use of an embedded FEM model, thus reducing the parameter space while simultaneously guiding the Bayesian model via physics-based principles. To validate the method, bridge response data is generated from the vehicle-bridge FEM given a set of “true” parameters and the bias and standard deviation of the parameter estimates are analyzed. Additionally, the mean parameter estimates are used to solve the FEM model and the results are compared against the results obtained for “true” parameter values. A sensitivity study is also conducted to demonstrate methods for properly formulating model spaces to improve the Bayesian estimation routine. The study concludes with a discussion highlighting factors that need to be considered when leveraging experimental data to update FEMs of concrete structures using AI techniques.
more »
« less
Structural health monitoring using extremely compressed data through deep learning
Abstract This study introduces a novel convolutional neural network (CNN)‐based approach for structural health monitoring (SHM) that exploits a form of measured compressed response data through transfer learning (TL)‐based techniques. The implementation of the proposed methodology allows damage identification and localization within a realistic large‐scale system. To validate the proposed method, first, a well‐known benchmark model is numerically simulated. Using acceleration response histories, as well as compressed response data in terms of discrete histograms, CNN models are trained, and the robustness of the CNN architectures is evaluated. Finally, pretrained CNNs are fine‐tuned to be adaptable for three‐parameter, extremely compressed response data, based on the response mean, standard deviation, and a scale factor. The performance of each CNN implementation is assessed using training accuracy histories as well as confusion matrices, along with other performance metrics. In addition to the numerical study, the performance of the proposed method is demonstrated using experimental vibration response data for verification and validation. The results indicate that deep TL can be implemented effectively for SHM of similar structural systems with different types of sensors.
more »
« less
- Award ID(s):
- 1646420
- PAR ID:
- 10124935
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer-Aided Civil and Infrastructure Engineering
- Volume:
- 35
- Issue:
- 6
- ISSN:
- 1093-9687
- Page Range / eLocation ID:
- p. 597-614
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Given its demonstrated ability in analyzing and revealing patterns underlying data, Deep Learning (DL) has been increasingly investigated to complement physics-based models in various aspects of smart manufacturing, such as machine condition monitoring and fault diagnosis, complex manufacturing process modeling, and quality inspection. However, successful implementation of DL techniques relies greatly on the amount, variety, and veracity of data for robust network training. Also, the distributions of data used for network training and application should be identical to avoid the internal covariance shift problem that reduces the network performance applicability. As a promising solution to address these challenges, Transfer Learning (TL) enables DL networks trained on a source domain and task to be applied to a separate target domain and task. This paper presents a domain adversarial TL approach, based upon the concepts of generative adversarial networks. In this method, the optimizer seeks to minimize the loss (i.e., regression or classification accuracy) across the labeled training examples from the source domain while maximizing the loss of the domain classifier across the source and target data sets (i.e., maximizing the similarity of source and target features). The developed domain adversarial TL method has been implemented on a 1-D CNN backbone network and evaluated for prediction of tool wear propagation, using NASA's milling dataset. Performance has been compared to other TL techniques, and the results indicate that domain adversarial TL can successfully allow DL models trained on certain scenarios to be applied to new target tasks.more » « less
-
This study focuses on developing and examining the effectiveness of Transfer Learning (TL) for structural health monitoring (SHM) systems that transfer knowledge about damage states from one structure (i.e., the source domain) to another structure (i.e., the target domain). Transfer Learning (TL) is an efficient method for knowledge transfer and mapping from source to target domains. In addition, Proper Orthogonal Modes (POMs), which help classify behavior and health, provide a promising tool for damage identification in structural systems. Previous investigations show that damage intensity and location are highly correlated with POM variations for structures under unknown loads. To train damage identification algorithms based on POMs and ML, one generally needs to use multiple simulations to generate damage scenarios. The developed process is applied to a simply supported truss span in a multi-span railway bridge. TL is first used to obtain relationships between POMs for two modeled bridges: one being a source model (i.e., labeled) and the other being the target modeled bridge (i.e., unlabeled). This technique is then implemented to develop POMs for a damaged, unknown target using TL that links source and target POMs. It is shown that the trained knowledge from one bridge was effectively generalized to other, somewhat similar, bridges in the population.more » « less
-
null (Ed.)Structural Health Monitoring (SHM) aims to shift aircraft maintenance from a time-based to a condition-based approach. Within all the SHM techniques, Acoustic Emission (AE) allows for the monitoring of large areas by analyzing Lamb waves propagating in plate like structures. In this study, the authors proposed a Time Reversal (TR) methodology with the aim of reconstructing an original and unaltered signal from an AE event. Although the TR method has been applied in Narrow-Band (NwB) signal reconstruction, it fails when a Broad-Band (BdB) signal, such as a real AE event, is present. Therefore, a novel methodology based on the use of a Frequencies Compensation Transfer Function (FCTF), which is capable of reconstructing both NwB and real BdB signals, is presented. The study was carried out experimentally using several sensor layouts and materials with two different AE sources: (i) a Numerically Built Broadband (NBB) signal, (ii) a Pencil Lead Break (PLB). The results were validated numerically using Abaqus/CAE TM with the implementation of absorbing boundaries to minimize edge reflections.more » « less
-
Ultrasound computed tomography (USCT) is one of the advanced imaging techniques used in structural health monitoring (SHM) and medical imaging due to its relatively low-cost, rapid data acquisition process. The time-domain full waveform inversion (TDFWI) method, an iterative inversion approach, has shown great promise in USCT. However, such an iterative process can be very time-consuming and computationally expensive but can be greatly accelerated by integrating an AI-based approach (e.g., convolution neural network (CNN)). Once trained, the CNN model takes low-iteration TDFWI images as input and instantaneously predicts material property distribution within the scanned region. Nevertheless, the quality of the reconstruction with the current CNN degrades with the increased complexity of material distributions. Another challenge is the availability of enough experimental data and, in some cases, even synthetic surrogate data. To alleviate these issues, this paper details a systematic study of the enhancement effect of a 2D CNN (U-Net) by improving the quality with limited training data. To achieve this, different augmentation schemes (flipping and mixing existing data) were implemented to increase the amount and complexity of the training datasets without generating a substantial number of samples. The objective was to evaluate the enhancement effect of these augmentation techniques on the performance of the U-Net model at FWI iterations. A thousand numerically built samples with acoustic material properties are used to construct multiple datasets from different FWI iterations. A parallelized, high-performance computing (HPC) based framework has been created to rapidly generate the training data. The prediction results were compared against the ground truth images using standard matrices, such as the structural similarity index measure (SSIM) and average mean square error (MSE). The results show that the increased number of samples from augmentations improves shape imaging of the complex regions even with a low iteration FWI training data.more » « less
An official website of the United States government
