Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al \cite{DISZ17} and follow-up work of Liang and Stokes \cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al \cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU is locally (asymptotically) stable converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms.
Last-Iterate Convergence: Zero-Sum Games and Constrained Min-Max Optimization
Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al~\cite{DISZ17} and follow-up work of Liang and Stokes~\cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al~\cite{SALS15}.
The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU becomes a contracting map converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms.
- Award ID(s):
- 1741137
- Publication Date:
- NSF-PAR ID:
- 10125388
- Journal Name:
- Innovations in Theoretical Computer Science
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
https://arxiv.org/abs/2010.13724 We study the question of obtaining last-iterate convergence rates for no-regret learning algorithms in multi-player games. We show that the optimistic gradient (OG) algorithm with a constant step-size, which is no-regret, achieves a last-iterate rate of O(1/T‾‾√) with respect to the gap function in smooth monotone games. This result addresses a question of Mertikopoulos & Zhou (2018), who asked whether extra-gradient approaches (such as OG) can be applied to achieve improved guarantees in the multi-agent learning setting. The proof of our upper bound uses a new technique centered around an adaptive choice of potential function at each iteration. We also show that the O(1/T‾‾√) rate is tight for all p-SCLI algorithms, which includes OG as a special case. As a byproduct of our lower bound analysis we additionally present a proof of a conjecture of Arjevani et al. (2015) which is more direct than previous approaches.
-
Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of \{OGDA\}-stable critical points is a superset of \{GDA\}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective.
-
Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of \{OGDA\}-stable critical points is a superset of \{GDA\}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective.
-
Dasgupta, Sanjoy ; Haghtalab, Nika (Ed.)Convex-concave min-max problems are ubiquitous in machine learning, and people usually utilize first-order methods (e.g., gradient descent ascent) to find the optimal solution. One feature which separates convex-concave min-max problems from convex minimization problems is that the best known convergence rates for min-max problems have an explicit dependence on the size of the domain, rather than on the distance between initial point and the optimal solution. This means that the convergence speed does not have any improvement even if the algorithm starts from the optimal solution, and hence, is oblivious to the initialization. Here, we show that strict-convexity-strict-concavity is sufficient to get the convergence rate to depend on the initialization. We also show how different algorithms can asymptotically achieve initialization-dependent convergence rates on this class of functions. Furthermore, we show that the so-called “parameter-free” algorithms allow to achieve improved initialization-dependent asymptotic rates without any learning rate to tune. In addition, we utilize this particular parameter-free algorithm as a subroutine to design a new algorithm, which achieves a novel non-asymptotic fast rate for strictly-convex-strictly-concave min-max problems with a growth condition and Hölder continuous solution mapping. Experiments are conducted to verify our theoretical findings and demonstrate the effectiveness of the proposed algorithms.