Functional connectivity between the brain and body kinematics has largely not been investigated due to the requirement of motionlessness in neuroimaging techniques such as functional magnetic resonance imaging (fMRI). However, this connectivity is disrupted in many neurodegenerative disorders, including Parkinson’s Disease (PD), a neurological progressive disorder characterized by movement symptoms including slowness of movement, stiffness, tremors at rest, and walking and standing instability. In this study, brain activity is recorded through functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), and body kinematics were captured by a motion capture system (Mocap) based on an inertial measurement unit (IMU) for gross movements (large movements such as limb kinematics), and the WearUp glove for fine movements (small range movements such as finger kinematics). PD and neurotypical (NT) participants were recruited to perform 8 different movement tasks. The recorded data from each modality have been analyzed individually, and the processed data has been used for classification between the PD and NT groups. The average changes in oxygenated hemoglobin (HbO2) from fNIRS, EEG power spectral density in the Theta, Alpha, and Beta bands, acceleration vector from Mocap, and normalized WearUp flex sensor data were used for classification. 12 different support vector machine (SVM) classifiers have been used on different datasets such as only fNIRS data, only EEG data, hybrid fNIRS/EEG data, and all the fused data for two classification scenarios: classifying PD and NT based on individual activities, and all activity data fused together. The PD and NT group could be distinguished with more than 83% accuracy for each individual activity. For all the fused data, the PD and NT groups are classified with 81.23%, 92.79%, 92.27%, and 93.40% accuracy for the fNIRS only, EEG only, hybrid fNIRS/EEG, and all fused data, respectively. The results indicate that the overall performance of classification in distinguishing PD and NT groups improves when using both brain and body data.
more »
« less
Experimental Comparison of Open Source Visual-Inertial-Based State Estimation Algorithms in the Underwater Domain
A plethora of state estimation techniques have appeared in the last decade using visual data, and more recently with added inertial data. Datasets typically used for evaluation include indoor and urban environments, where supporting videos have shown impressive performance. However, such techniques have not been fully evaluated in challenging conditions, such as the marine domain. In this paper, we compare ten recent open-source packages to provide insights on their performance and guidelines on addressing current challenges. Specifically, we selected direct methods and tightly-coupled optimization techniques that fuse camera and Inertial Measurement Unit (IMU) data together. Experiments are conducted by testing all packages on datasets collected over the years with underwater robots in our laboratory. All the datasets are made available online.
more »
« less
- PAR ID:
- 10125477
- Date Published:
- Journal Name:
- IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- Page Range / eLocation ID:
- 7221--7227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The prevalent use of third-party components in modern software development, coupled with rapid modernization and digitization, has significantly amplified the risk of software supply chain security attacks. Popular large registries like npm and PyPI are highly targeted malware distribution channels for attackers due to heavy growth and dependence on third-party components. Industry and academia are working towards building tools to detect malware in the software supply chain. However, a lack of benchmark datasets containing both malware and neutral packages hampers the evaluation of the performance of these malware detection tools. The goal of our study is to aid researchers and tool developers in evaluating and improving malware detection tools by contributing a benchmark dataset built by systematically collecting malicious and neutral packages from the npm and PyPI ecosystems. We present MalwareBench, a labeled dataset of 20,534 packages (of which 6,475 are malicious) of npm and PyPI ecosystems. We constructed the benchmark dataset by incorporating pre-existing malware datasets with the Socket internal benchmark data and including popular and newly released npm and PyPI packages. The ground truth labels of these packages were determined using the Socket AI Scanner and manual inspection.more » « less
-
A Lidar and Radar Meteorology Science Gateway for Education and Research on the NSF Jetstream2 CloudThis paper introduces a lidar and radar meteorology science gateway deployed on the NSF Jetstream2 cloud, designed to enhance educational and research activities in atmospheric science. Utilizing the "Zero to JupyterHub with Kubernetes" workflow, we have created a science gateway that integrates lidar and radar meteorology software packages, notably the Lidar Radar Open Software Environment (LROSE). This integration allows users to execute applications directly from the JupyterLab terminal, streamlining the creation of datasets for further anal- ysis and visualization within Jupyter notebooks. By combining traditional command-line operations with modern Python-based tools for data analysis and visualization, this gateway provides a robust end-to-end solution that caters to both educational and research needs. The gateway has already been vital in facilitating LROSE instructional workshops and will see future enhancements such as GPU acceleration to boost performance. Our work demonstrates the significant potential of merging established scientific computing techniques with advanced Python environments, opening new avenues for computational science education and research.more » « less
-
This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization – one of the main problems affecting other packages in underwater domain – by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness.more » « less
-
Abstract BackgroundRecently, machine learning techniques have been applied to data collected from inertial measurement units to automatically assess balance, but rely on hand-engineered features. We explore the utility of machine learning to automatically extract important features from inertial measurement unit data for balance assessment. FindingsTen participants with balance concerns performed multiple balance exercises in a laboratory setting while wearing an inertial measurement unit on their lower back. Physical therapists watched video recordings of participants performing the exercises and rated balance on a 5-point scale. We trained machine learning models using different representations of the unprocessed inertial measurement unit data to estimate physical therapist ratings. On a held-out test set, we compared these learned models to one another, to participants’ self-assessments of balance, and to models trained using hand-engineered features. Utilizing the unprocessed kinematic data from the inertial measurement unit provided significant improvements over both self-assessments and models using hand-engineered features (AUROC of 0.806 vs. 0.768, 0.665). ConclusionsUnprocessed data from an inertial measurement unit used as input to a machine learning model produced accurate estimates of balance performance. The ability to learn from unprocessed data presents a potentially generalizable approach for assessing balance without the need for labor-intensive feature engineering, while maintaining comparable model performance.more » « less
An official website of the United States government

