skip to main content


Title: Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation
Discovery of causal relations from observational data is essential for many disciplines of science and real-world applications. However, unlike other machine learning algorithms, whose development has been greatly fostered by a large amount of available benchmark datasets, causal discovery algorithms are notoriously difficult to be systematically evaluated because few datasets with known ground-truth causal relations are available. In this work, we handle the problem of evaluating causal discovery algorithms by building a flexible simulator in the medical setting. We develop a neuropathic pain diagnosis simulator, inspired by the fact that the biological processes of neuropathic pathophysiology are well studied with well-understood causal influences. Our simulator exploits the causal graph of theneuropathic pain pathology and its parameters in the generator are estimated from real-life patient cases. We show that the data generated from our simulator have similar statistics as real-world data. As a clear advantage, the simulator can produce infinite samples without jeopardizing the privacy of real-world patients. Our simulator provides a natural tool for evaluating various types of causal discovery algorithms, including those to deal with practical issues in causal discovery, such as unknown confounders, selection bias, and missing data. Using our simulator,we have evaluated extensively causal discovery algorithms under various settings.  more » « less
Award ID(s):
1829681
NSF-PAR ID:
10125763
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Causal discovery is an important problem in many sciences that enables us to estimate causal relationships from observational data. Particularly, in the healthcare domain, it can guide practitioners in making informed clinical decisions. Several causal discovery approaches have been developed over the last few decades. The success of these approaches mostly relies on a large number of data samples. In practice, however, an infinite amount of data is never available. Fortunately, often we have some prior knowledge available from the problem domain. Particularly, in healthcare settings, we often have some prior knowledge such as expert opinions, prior RCTs, literature evidence, and systematic reviews about the clinical problem. This prior information can be utilized in a systematic way to address the data scarcity problem. However, most of the existing causal discovery approaches lack a systematic way to incorporate prior knowledge during the search process. Recent advances in reinforcement learning techniques can be explored to use prior knowledge as constraints by penalizing the agent for their violations. Therefore, in this work, we propose a framework KCRL that utilizes the existing knowledge as a constraint to penalize the search process during causal discovery. This utilization of existing information during causal discovery reduces the graph search space and enables a faster convergence to the optimal causal mechanism. We evaluated our framework on benchmark synthetic and real datasets as well as on a real-life healthcare application. We also compared its performance with several baseline causal discovery methods. The experimental findings show that penalizing the search process for constraint violation yields better performance compared to existing approaches that do not include prior knowledge. 
    more » « less
  2. We present CausalSim, a causal framework for unbiased trace-driven simulation. Current trace-driven simulators assume that the interventions being simulated (e.g., a new algorithm) would not affect the validity of the traces. However, real-world traces are often biased by the choices algorithms make during trace collection, and hence replaying traces under an intervention may lead to incorrect results. CausalSim addresses this challenge by learning a causal model of the system dynamics and latent factors capturing the underlying system conditions during trace collection. It learns these models using an initial randomized control trial (RCT) under a fixed set of algorithms, and then applies them to remove biases from trace data when simulating new algorithms. Key to CausalSim is mapping unbiased trace-driven simulation to a tensor completion problem with extremely sparse observations. By exploiting a basic distributional invariance property present in RCT data, CausalSim enables a novel tensor completion method despite the sparsity of observations. Our extensive evaluation of CausalSim on both real and synthetic datasets, including more than ten months of real data from the Puffer video streaming system shows it improves simulation accuracy, reducing errors by 53% and 61% on average compared to expert-designed and supervised learning baselines. Moreover, CausalSim provides markedly different insights about ABR algorithms compared to the biased baseline simulator, which we validate with a real deployment 
    more » « less
  3. Large-scale driving datasets such as Waymo Open Dataset and nuScenes substan- tially accelerate autonomous driving research, especially for perception tasks such as 3D detection and trajectory forecasting. Since the driving logs in these datasets contain HD maps and detailed object annotations that accurately reflect the real- world complexity of traffic behaviors, we can harvest a massive number of complex traffic scenarios and recreate their digital twins in simulation. Compared to the hand- crafted scenarios often used in existing simulators, data-driven scenarios collected from the real world can facilitate many research opportunities in machine learning and autonomous driving. In this work, we present ScenarioNet, an open-source platform for large-scale traffic scenario modeling and simulation. ScenarioNet defines a unified scenario description format and collects a large-scale repository of real-world traffic scenarios from the heterogeneous data in various driving datasets including Waymo, nuScenes, Lyft L5, Argoverse, and nuPlan datasets. These scenarios can be further replayed and interacted with in multiple views from Bird- Eye-View layout to realistic 3D rendering in MetaDrive simulator. This provides a benchmark for evaluating the safety of autonomous driving stacks in simulation before their real-world deployment. We further demonstrate the strengths of Sce- narioNet on large-scale scenario generation, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. Code, demo videos, and website are available at https://metadriverse.github.io/scenarionet. 
    more » « less
  4. Large-scale driving datasets such as Waymo Open Dataset and nuScenes substantially accelerate autonomous driving research, especially for perception tasks such as 3D detection and trajectory forecasting. Since the driving logs in these datasets contain HD maps and detailed object annotations that accurately reflect the real- world complexity of traffic behaviors, we can harvest a massive number of complex traffic scenarios and recreate their digital twins in simulation. Compared to the hand- crafted scenarios often used in existing simulators, data-driven scenarios collected from the real world can facilitate many research opportunities in machine learning and autonomous driving. In this work, we present ScenarioNet, an open-source platform for large-scale traffic scenario modeling and simulation. ScenarioNet defines a unified scenario description format and collects a large-scale repository of real-world traffic scenarios from the heterogeneous data in various driving datasets including Waymo, nuScenes, Lyft L5, Argoverse, and nuPlan datasets. These scenarios can be further replayed and interacted with in multiple views from Bird- Eye-View layout to realistic 3D rendering in MetaDrive simulator. This provides a benchmark for evaluating the safety of autonomous driving stacks in simulation before their real-world deployment. We further demonstrate the strengths of ScenarioNet on large-scale scenario generation, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. Code, demo videos, and website are available at https://metadriverse.github.io/scenarionet. 
    more » « less
  5. Identifying cause-effect relations among variables is a key step in the decision-making process. Whereas causal inference requires randomized experiments, researchers and policy makers are increasingly using observational studies to test causal hypotheses due to the wide availability of data and the infeasibility of experiments. The matching method is the most used technique to make causal inference from observational data. However, the pair assignment process in one-to-one matching creates uncertainty in the inference because of different choices made by the experimenter. Recently, discrete optimization models have been proposed to tackle such uncertainty; however, they produce 0-1 nonlinear problems and lack scalability. In this work, we investigate this emerging data science problem and develop a unique computational framework to solve the robust causal inference test instances from observational data with continuous outcomes. In the proposed framework, we first reformulate the nonlinear binary optimization problems as feasibility problems. By leveraging the structure of the feasibility formulation, we develop greedy schemes that are efficient in solving robust test problems. In many cases, the proposed algorithms achieve a globally optimal solution. We perform experiments on real-world data sets to demonstrate the effectiveness of the proposed algorithms and compare our results with the state-of-the-art solver. Our experiments show that the proposed algorithms significantly outperform the exact method in terms of computation time while achieving the same conclusion for causal tests. Both numerical experiments and complexity analysis demonstrate that the proposed algorithms ensure the scalability required for harnessing the power of big data in the decision-making process. Finally, the proposed framework not only facilitates robust decision making through big-data causal inference, but it can also be utilized in developing efficient algorithms for other nonlinear optimization problems such as quadratic assignment problems. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation of the National Science Foundation [Grant 2047094]. Supplemental Material: The online supplements are available at https://doi.org/10.1287/ijoc.2022.1226 . 
    more » « less