We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the lg(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancilla - an exponential improvement over the best qubit-only equivalent. Our approach features a 70× improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability (fidelity) for our circuit, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path toward extending the frontier of quantum computers.
more »
« less
Asymptotic improvements to quantum circuits via qutrits
Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qutrits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic depth (runtime) decomposition of the Generalized Toffoli gate using no ancilla-a significant improvement over linear depth for the best qubit-only equivalent. Our circuit construction also features a 70x improvement in two-qudit gate count over the qubit-only equivalent decomposition. This results in circuit cost reductions for important algorithms like quantum neurons and Grover search. We develop an open-source circuit simulator for qutrits, along with realistic near-term noise models which account for the cost of operating qutrits. Simulation results for these noise models indicate over 90% mean reliability (fidelity) for our circuit construction, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path towards scaling quantum computation.
more »
« less
- PAR ID:
- 10126140
- Date Published:
- Journal Name:
- ISCA '19 Proceedings of the 46th International Symposium on Computer Architecture
- Page Range / eLocation ID:
- 554 to 566
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state encodes the quantum computation. All previous maps relied on the Feynman-Kitaev construction, which introduces an ancillary ‘clock register’ to track the computational steps. Our construction, on the other hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction of a clock register. This comes at the cost of the ground state containing only a noisy version of the quantum computation, with independent stochastic noise. We can remedy this—making our construction robust—by using quantum fault tolerance. In addition to the stochastic noise, we show that any state with energy density exponentially small in the circuit depth encodes a noisy version of the quantum computation with adversarial noise. We also show that any ‘combinatorial state’ with energy density polynomially small in depth encodes the quantum computation with adversarial noise. This serves as evidence that any state with energy density polynomially small in depth has a similar property. As an application, we show that contracting injective tensor networks to additive error is BQP-hard. We also discuss the implication of our construction to the quantum PCP conjecture, combining with an observation that QMA verification can be done in logarithmic depth.more » « less
-
Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps have the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE.more » « less
-
Running quantum programs is fraught with challenges on on today’s noisy intermediate scale quantum (NISQ) devices. Many of these challenges originate from the error characteristics that stem from rapid decoherence and noise during measurement, qubit connections, crosstalk, the qubits themselves, and transformations of qubit state via gates. Not only are qubits not “created equal”, but their noise level also changes over time. IBM is said to calibrate their quantum systems once per day and reports noise levels (errors) at the time of such calibration. This information is subsequently used to map circuits to higher quality qubits and connections up to the next calibration point. This work provides evidence that there is room for improvement over this daily calibration cycle. It contributes a technique to measure noise levels (errors) related to qubits immediately before executing one or more sensitive circuits and shows that just-in-time noise measurements can benefit late physical qubit mappings. With this just-in-time recalibrated transpilation, the fidelity of results is improved over IBM’s default mappings, which only uses their daily calibrations. The framework assess two major sources of noise, namely readout errors (measurement errors) and two-qubit gate/connection errors. Experiments indicate that the accuracy of circuit results improves by 3-304% on average and up to 400% with on-the-fly circuit mappings based on error measurements just prior to application execution.more » « less
-
Quantum systems have the potential to demonstrate significant computational advantage, but current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods. The unintentional coupling of qubits to their environment and each other adds significant noise to computation, and improved methods to combat decoherence are required to boost the performance of quantum algorithms on real machines. While many existing techniques for mitigating error rely on adding extra gates to the circuit [ 13 , 20 , 56 ], calibrating new gates [ 50 ], or extending a circuit’s runtime [ 32 ], this article’s primary contribution leverages the gates already present in a quantum program without extending circuit duration. We exploit circuit slack for single-qubit gates that occur in idle windows, scheduling the gates such that their timing can counteract some errors. Spin-echo corrections that mitigate decoherence on idling qubits act as inspiration for this work. Theoretical models, however, fail to capture all sources of noise in Noisy Intermediate Scale Quantum devices, making practical solutions necessary that better minimize the impact of unpredictable errors in quantum machines. This article presents TimeStitch: a novel framework that pinpoints the optimum execution schedules for single-qubit gates within quantum circuits. TimeStitch, implemented as a compilation pass, leverages the reversible nature of quantum computation to boost the success of circuits on real quantum machines. Unlike past approaches that apply reversibility properties to improve quantum circuit execution [ 35 ], TimeStitch amplifies fidelity without violating critical path frontiers in either the slack tuning procedures or the final rescheduled circuit. On average, compared to a state-of-the-art baseline, a practically constrained TimeStitch achieves a mean 38% relative improvement in success rates, with a maximum of 106%, while observing bounds on circuit depth. When unconstrained by depth criteria, TimeStitch produces a mean relative fidelity increase of 50% with a maximum of 256%. Finally, when TimeStitch intelligently leverages periodic dynamical decoupling within its scheduling framework, a mean 64% improvement is observed over the baseline, relatively outperforming stand-alone dynamical decoupling by 19%, with a maximum of 287%.more » « less
An official website of the United States government

