skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolution of snow bedforms in the Colorado Front Range and the processes that shape them
Abstract. When wind blows over dry snow, the snow surface self-organizesinto bedforms such as dunes, ripples, snow waves, and sastrugi. Thesebedforms govern the interaction between wind, heat, and the snowpack, butthus far they have attracted few scientific studies.We present the first time-lapse documentation of snow bedform movement and evolution, as part of a series of detailed observations of snow bedform movement in the Colorado Front Range.We show examples of the movement of snow ripples, snow waves, barchan dunes,snow steps, and sastrugi. We also introduce a previously undocumentedbedform: the stealth dune. These observations show that (1) snow dunesaccelerate minute-by-minute in response to gusts, (2) sastrugi and snow stepspresent steep edges to the wind and migrate downwind as those edges erode,(3) snow waves and dunes deposit layers of cohesive snow in their wake, and(4) bedforms evolve along complex cyclic trajectories. These observationsprovide the basis for new conceptual models of bedform evolution, based onthe relative fluxes of snowfall, aeolian transport, erosion, and snowsintering across and into the surface. We find that many snow bedforms aregenerated by complex interactions between these processes. The prototypicalexample is the snow wave, in which deposition, sintering, and erosion occurin transverse stripes across the snowscape.  more » « less
Award ID(s):
1637686
PAR ID:
10126840
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
13
Issue:
4
ISSN:
1994-0424
Page Range / eLocation ID:
1267 to 1281
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many water quality and ecosystem functions performed by streams occur in the benthic biolayer, the biologically active upper (~5 cm) layer of the streambed. Solute transport through the benthic biolayer is facilitated by bedform pumping, a physical process in which dynamic and static pressure variations over the surface of stationary bedforms (e.g., ripples and dunes) drive flow across the sediment‐water interface. In this paper we derive two predictive modeling frameworks, one advective and the other diffusive, for solute transport through the benthic biolayer by bedform pumping. Both frameworks closely reproduce patterns and rates of bedform pumping previously measured in the laboratory, provided that the diffusion model's dispersion coefficient declines exponentially with depth. They are also functionally equivalent, such that parameter sets inferred from the 2D advective model can be applied to the 1D diffusive model, and vice versa. The functional equivalence and complementary strengths of these two models expand the range of questions that can be answered, for example, by adopting the 2D advective model to study the effects of geomorphic processes (such as bedform adjustments to land use change) on flow‐dependent processes and the 1D diffusive model to study problems where multiple transport mechanisms combine (such as bedform pumping and turbulent diffusion). By unifying 2D advective and 1D diffusive descriptions of bedform pumping, our analytical results provide a straightforward and computationally efficient approach for predicting, and better understanding, solute transport in the benthic biolayer of streams and coastal sediments. 
    more » « less
  2. Abstract Notwithstanding the large number of studies on bedforms such as dunes and antidunes, predicting equilibrium bedform type and geometry for a given flow regime, sediment supply and caliber remains an open problem. Here, we present results from laboratory experiments specifically designed to study how upper regime bedform type and geometry vary with sediment supply and caliber. Experiments were performed in a sediment feed flume with flow rates varying between 5 and 30 l/s and sand supply rates varying between 0.6 and 20 kg/min. We used both uniform and non‐uniform sands with geometric mean diameters varying between 0.22 and 0.87 mm. Analysis of our data and data available in the literature reveals that the ratio of total (bedload plus suspension) volume transport rate of sediment to water dischargeQs/Qwplays a prime control on upper regime equilibrium beds. Equilibrium bedforms transition from washed out dunes (lower regime) to downstream migrating antidunes (upper regime) forQs/Qwbetween 0.0003 and 0.0007. For values ofQs/Qwgreater than 0.0015, the bedform length increases withQs/Qw. At these high values ofQs/Qw, equilibrium in fine sand is characterized by upstream migrating antidunes, cyclic steps, and significant suspended load. In experiments with coarse sand, equilibrium is characterized by plane bed with bedload transport in sheet flow mode. Standing waves form at the transition between downstream migrating antidunes and upstream migrating bedforms. 
    more » « less
  3. Abstract Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn-trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long-term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near-surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0∘C for the melt event. Percolation-related refrozen layers and layer thinning may also contribute to long-term spectral changes after the melt event. Single-station observations are inverted for elastic structure for multiple stations across the ice shelf. High-frequency ambient noise seismology presents opportunities for continuous assessment of near-surface ice shelf or other firn environments. 
    more » « less
  4. Abstract Bedform evolution and preserved cross strata are known to respond to floods. However, it is unclear if autogenic dynamics mask the flood signal in bedform evolution and cross strata. To address this, we characterize the temporal structure of autogenic noise in steady‐state bedform evolution in a physical experiment. Results reveal the existence of bedform groups—quasi‐stable collections of bedforms—that migrate at a similar speed as bedforms. We find that bedform and bedform‐group turnover timescales are the key autogenic timescales of bed evolution that set the transition time‐periods between different noise regimes in bedform evolution. Results suggest that bedform‐group turnover timescale sets the lower limit for detecting flood signals in bedform evolution, and floods with duration shorter than bedform turnover timescale can be severely degraded in bedform evolution and cross strata. Our work provides a new framework for interrogating fluvial cross strata for reconstruction of past floods. 
    more » « less
  5. A light breeze rising over calm water initiates an intricate chain of events that culminates in a centimetres-deep turbulent shear layer capped by gravity–capillary ripples. At first, viscous stress accelerates a laminar wind-drift layer until small surface ripples appear. The surface ripples then catalyse the growth of a second instability in the wind-drift layer, which eventually sharpens into along-wind jets and downwelling plumes, before devolving into three-dimensional turbulence. In this paper, we compare laboratory experiments with simplified, wave-averaged numerical simulations of wind-drift layer evolution beneath monochromatic, constant-amplitude surface ripples seeded with random initial perturbations. Despite their simplicity, our simulations reproduce many aspects of the laboratory-based observations – including the growth, nonlinear development and turbulent breakdown the wave-catalysed instability – generally validating our wave-averaged model. But we also find that the simulated development of the wind-drift layer is disturbingly sensitive to the amplitude of the prescribed surface wave field, such that agreement is achieved through suspiciously careful tuning of the ripple amplitude. As a result of this sensitivity, we conclude that wave-averaged models should really describe the coupled evolution of the surface waves together with the flow beneath to be regarded as truly ‘predictive’. 
    more » « less