skip to main content

Title: Secure Multi-User Content Sharing for Augmented Reality Applications
Augmented reality (AR), which overlays virtual content on top of the user’s perception of the real world, has now begun to enter the consumer market. Besides smartphone platforms, early-stage head-mounted displays such as the Microsoft HoloLens are under active development. Many compelling uses of these technologies are multi-user: e.g., inperson collaborative tools, multiplayer gaming, and telepresence. While prior work on AR security and privacy has studied potential risks from AR applications, new risks will also arise among multiple human users. In this work, we explore the challenges that arise in designing secure and private content sharing for multi-user AR. We analyze representative application case studies and systematize design goals for security and functionality that a multi-user AR platform should support. We design an AR content sharing control module that achieves these goals and build a prototype implementation (ShareAR) for the HoloLens. This work builds foundations for secure and private multi-user AR interactions.
Authors:
; ;
Award ID(s):
1651230
Publication Date:
NSF-PAR ID:
10126914
Journal Name:
Proceedings of the USENIX Security Symposium
Sponsoring Org:
National Science Foundation
More Like this
  1. Augmented reality (AR) technologies, such as Microsoft’s HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user’s surroundings and overlaying virtual output on the user’s perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in securing AR output.
  2. Canteaut, Anne ; Standaert, Francois-Xavier (Ed.)
    Secure multi-party computation (MPC) allows multiple par-ties to perform secure joint computations on their private inputs. To-day, applications for MPC are growing with thousands of parties wish-ing to build federated machine learning models or trusted setups for blockchains. To address such scenarios we propose a suite of novel MPC protocols that maximize throughput when run with large numbers of parties. In particular, our protocols have both communication and computation complexity that decrease with the number of parties. Our protocols build on prior protocols based on packed secret-sharing, introducing new techniques to build more efficient computation for general circuits. Specifically, we introduce a new approach for handling linear attacks that arise in protocols using packed secret-sharing and we propose a method for unpacking shared multiplication triples without increasingthe asymptotic costs. Compared with prior work, we avoid the log|C|overhead required when generically compiling circuits of size |C| for use in a SIMD computation, and we improve over folklore “committee-based” solutions by a factor of O(s), the statistical security parameter. In practice, our protocol is up to 10X faster than any known construction, under a reasonable set of parameters.
  3. Canteaut, Anne ; Standaert, Francois-Xavier (Ed.)
    Secure multi-party computation (MPC) allows multiple par-ties to perform secure joint computations on their private inputs. To-day, applications for MPC are growing with thousands of parties wish-ing to build federated machine learning models or trusted setups for blockchains. To address such scenarios we propose a suite of novel MPC protocols that maximize throughput when run with large numbers of parties. In particular, our protocols have both communication and computation complexity that decrease with the number of parties. Our protocols build on prior protocols based on packed secret-sharing, introducing new techniques to build more efficient computation for general circuits. Specifically, we introduce a new approach for handling linear attacks that arise in protocols using packed secret-sharing and we propose a method for unpacking shared multiplication triples without increasingthe asymptotic costs. Compared with prior work, we avoid the log|C|overhead required when generically compiling circuits of size |C| for use in a SIMD computation, and we improve over folklore “committee-based” solutions by a factor of O(s), the statistical security parameter. In practice, our protocol is up to 10X faster than any known construction, under a reasonable set of parameters.
  4. We investigate the privacy practices of labor organizers in the computing technology industry and explore the changes in these practices as a response to remote work. Our study is situated at the intersection of two pivotal shifts in workplace dynamics: (a) the increase in online workplace communications due to remote work, and (b) the resurgence of the labor movement and an increase in collective action in workplaces— especially in the tech industry, where this phenomenon has been dubbed the tech worker movement. The shift of work-related communications to online digital platforms in response to an increase in remote work is creating new opportunities for and risks to the privacy of workers. These risks are especially significant for organizers of collective action, with several well-publicized instances of retaliation against labor organizers by companies. Through a series of qualitative interviews with 29 tech workers involved in collective action, we investigate how labor organizers assess and mitigate risks to privacy while engaging in these actions. Among the most common risks that organizers experienced are retaliation from their employer, lateral worker conflict, emotional burnout, and the possibility of information about the collective effort leaking to management. Depending on the nature and source of themore »risk, organizers use a blend of digital security practices and community-based mechanisms. We find that digital security practices are more relevant when the threat comes from management, while community management and moderation are central to protecting organizers from lateral worker conflict. Since labor organizing is a collective rather than individual project, individual privacy and collective privacy are intertwined, sometimes in conflict and often mutually constitutive. Notions of privacy that solely center individuals are often incompatible with the needs of organizers, who noted that safety in numbers could only be achieved when workers presented a united front to management. Based on our interviews, we identify key topics for future research, such as the growing prevalence of surveillance software and the needs of international and gig worker organizers. We conclude with design recommendations that can help create safer, more secure and more private tools to better address the risks that organizers face.« less
  5. Augmented Reality (AR) has become a valuable tool for education and training processes. Meanwhile, cloud-based technologies can foster collaboration and other interaction modalities to enhance learning. We combine the cloud capabilities with AR technologies to present Meta-AR-App, an authoring platform for collaborative AR, which enables authoring between instructors and students. Additionally, we introduce a new application of an established collaboration process, the pull-based development model, to enable sharing and retrieving of AR learning content. We customize this model and create two modalities of interaction for the classroom: local (student to student) and global (instructor to class) pull. Based on observations from our user studies, we organize a four-category classroom model which implements our system: Work, Design, Collaboration, and Technology. Further, our system enables an iterative improvement workflow of the class content and enables synergistic collaboration that empowers students to be active agents in the learning process.