skip to main content

Title: The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas

The emission process of Fast Radio Bursts (FRBs) remains unknown. We investigate whether the synchrotron maser emission from relativistic shocks in a magnetar wind can explain the observed FRB properties. We perform particle-in-cell (PIC) simulations of perpendicular shocks in cold pair plasmas, checking our results for consistency among three PIC codes. We confirm that a linearly polarized X-mode wave is self-consistently generated by the shock and propagates back upstream as a precursor wave. We find that at magnetizations σ ≳ 1 (i.e. ratio of Poynting flux to particle energy flux of the pre-shock flow) the shock converts a fraction $f_\xi ^{\prime } \approx 7 \times 10^{-4}/\sigma ^2$ of the total incoming energy into the precursor wave, as measured in the shock frame. The wave spectrum is narrow-band (fractional width ≲1−3), with apparent but not dominant line-like features as many resonances concurrently contribute. The peak frequency in the pre-shock (observer) frame is $\omega ^{\prime \prime }_{\rm peak} \approx 3 \gamma _{\rm s | u} \omega _{\rm p}$, where γs|u is the shock Lorentz factor in the upstream frame and ωp the plasma frequency. At σ ≳ 1, where our estimated $\omega ^{\prime \prime }_{\rm peak}$ differs from previous works, the more » shock structure presents two solitons separated by a cavity, and the peak frequency corresponds to an eigenmode of the cavity. Our results provide physically grounded inputs for FRB emission models within the magnetar scenario.

« less
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 3816-3833
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Electromagnetic precursor waves generated by the synchrotron maser instability at relativistic magnetized shocks have been recently invoked to explain the coherent radio emission of fast radio bursts. By means of 2D particle-in-cell simulations, we explore the properties of the precursor waves in relativistic electron–positron perpendicular shocks as a function of the pre-shock magnetization σ ≳ 1 (i.e. the ratio of incoming Poynting flux to particle energy flux) and thermal spread Δγ ≡ kT/mc2 = 10−5−10−1. We measure the fraction fξ of total incoming energy that is converted into precursor waves, as computed in the post-shock frame. At fixed magnetization, we find that fξ is nearly independent of temperature as long as Δγ ≲ 10−1.5 (with only a modest decrease of a factor of 3 from Δγ = 10−5 to Δγ = 10−1.5), but it drops by nearly two orders of magnitude for Δγ ≳ 10−1. At fixed temperature, the scaling with magnetization $f_\xi \sim 10^{-3}\, \sigma ^{-1}$ is consistent with our earlier 1D results. For our reference σ = 1, the power spectrum of precursor waves is relatively broad (fractional width ∼1 − 3) for cold temperatures, whereas it shows pronounced line-like features with fractional width ∼0.2 for 10−3 ≲ Δγ ≲ 10−1.5. For σ ≳ 1, the precursor waves aremore »beamed within an angle ≃σ−1/2 from the shock normal (as measured in the post-shock frame), as required so they can outrun the shock. Our results can provide physically grounded inputs for FRB emission models based on maser emission from relativistic shocks.« less
  2. Abstract

    We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizationsσ≲ 10−4and pair-loading factorsZ±≲ 10 are studied, whereZ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσexceeds a critical valueσLthat decreases withZ±. AtσσLthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ±, leading to lowerσL. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales asE¯eZ±+11. (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ≈ 5 × 10−6. The ions then become essentially thermal with mean energyE¯i, while electrons form a nonthermal tail, extending fromEZ±+11E¯itoE¯i. Whenσ= 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here,more »the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows.

    « less
  3. Context. Standing and moving shocks in relativistic astrophysical jets are very promising sites for particle acceleration to large Lorentz factors and for the emission from the radio up to the γ -ray band. They are thought to be responsible for at least part of the observed variability in radio-loud active galactic nuclei. Aims. We aim to simulate the interactions of moving shock waves with standing recollimation shocks in structured and magnetized relativistic jets and to characterize the profiles of connected flares in the radio light curve. Methods. Using the relativistic magneto-hydrodynamic code MPI-AMRVAC and a radiative transfer code in post-processing, we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dynamics, and on the emitted radio light curve. First, we investigate different large-scale magnetic fields with their effects on the standing shocks and on the stratified jet morphology. Secondly, we study the interaction of a moving shock wave with the standing shocks. We calculated the synthetic synchrotron maps and radio light curves and analyze the variability at two frequencies 1 and 15.3 GHz and for several observation angles. Finally, we compare the characteristics of our simulated light curvesmore »with radio flares observed from the blazar 3C 273 with the Owens Valley Radio Observatory and Very Long Baseline Array in the MOJAVE survey between 2008 and 2019. Results. We find that in a structured over-pressured relativistic jet, the presence of the large-scale magnetic field structure changes the properties of the standing shock waves and leads to an opening in the jet. The interaction between waves from inner and outer jet components can produce strong standing shocks. When crossing such standing shocks, moving shock waves accompanying overdensities injected in the base of the jet cause very luminous radio flares. The observation of the temporal structure of these flares under different viewing angles probes the jet at different optical depths. At 1 GHz and for small angles, the self-absorption caused by the moving shock wave becomes more important and leads to a drop in the observed flux after it interacts with the brightest standing knot. A weak asymmetry is seen in the shape of the simulated flares, resulting from the remnant emission of the shocked standing shocks. The characteristics of the simulated flares and the correlation of peaks in the light curve with the crossing of moving and standing shocks favor this scenario as an explanation of the observed radio flares of 3C 273.« less
  4. Abstract Particle acceleration behind a shock wave due to interactions between magnetic islands in the heliosphere has attracted attention in recent years. The downstream acceleration may yield a continuous increase of particle flux downstream of the shock wave. Although it is not obvious how the downstream magnetic islands are produced, it has been suggested that current sheets are involved in the generation of magnetic islands due to their interaction with a shock wave. We perform 2D hybrid kinetic simulations to investigate the interaction between multiple current sheets and a shock wave. In the simulation, current sheets are compressed by the shock wave and a tearing instability develops at the compressed current sheets downstream of the shock. As the result of this instability, the electromagnetic fields become turbulent and magnetic islands form well downstream of the shock wave. We find a “post-cursor” region in which the downstream flow speed normal to the shock wave in the downstream rest frame is decelerated to ∼ 1 V A immediately behind the shock wave, where V A is the upstream Alfvén speed. The flow speed then gradually decelerates to 0 accompanied by the development of the tearing instability. We also observe an efficient productionmore »of energetic particles above 100 E 0 during the development of the instability some distance downstream of the shock wave, where E 0 = m p V A 2 and m p is the proton mass. This feature corresponds to Voyager observations showing that the anomalous cosmic-ray intensity increase begins some distance downstream of the heliospheric termination shock.« less
  5. ABSTRACT During the final stages of a compact object merger, if at least one of the binary components is a magnetized neutron star (NS), then its orbital motion substantially expands the NS’s open magnetic flux – and hence increases its wind luminosity – relative to that of an isolated pulsar. As the binary orbit shrinks due to gravitational radiation, the power and speed of this binary-induced inspiral wind may (depending on pair loading) secularly increase, leading to self-interaction and internal shocks in the outflow beyond the binary orbit. The magnetized forward shock can generate coherent radio emission via the synchrotron maser process, resulting in an observable radio precursor to binary NS merger. We perform 1D relativistic hydrodynamical simulations of shock interaction in the accelerating binary NS wind, assuming that the inspiral wind efficiently converts its Poynting flux into bulk kinetic energy prior to the shock radius. This is combined with the shock maser spectrum from particle-in-cell simulations, to generate synthetic radio light curves. The precursor burst with a fluence of ∼1 Jy·ms at ∼GHz frequencies lasts ∼1–500 ms following the merger for a source at ∼3 Gpc (Bd/1012 G)8/9, where Bd is the dipole field strength of the more strongly magnetized star.more »Given an outflow geometry concentrated along the binary equatorial plane, the signal may be preferentially observable for high-inclination systems, that is, those least likely to produce a detectable gamma-ray burst.« less