skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Convolutional Analysis Operator Learning: Acceleration and Convergence
Convolutional operator learning is gaining attention in many signal processing and computer vision applications. Learning kernels has mostly relied on so-called patch-domain approaches that extract and store many overlapping patches across training signals. Due to memory demands, patch-domain methods have limitations when learning kernels from large datasets – particularly with multi-layered structures, e.g., convolutional neural networks – or when applying the learned kernels to high-dimensional signal recovery problems. The so-called convolution approach does not store many overlapping patches, and thus overcomes the memory problems particularly with careful algorithmic designs; it has been studied within the “synthesis” signal model, e.g., convolutional dictionary learning. This paper proposes a new convolutional analysis operator learning (CAOL) framework that learns an analysis sparsifying regularizer with the convolution perspective, and develops a new convergent Block Proximal Extrapolated Gradient method using a Majorizer (BPEG-M) to solve the corresponding block multi-nonconvex problems. To learn diverse filters within the CAOL framework, this paper introduces an orthogonality constraint that enforces a tight-frame filter condition, and a regularizer that promotes diversity between filters. Numerical experiments show that, with sharp majorizers, BPEG-M significantly accelerates the CAOL convergence rate compared to the state-of-the-art block proximal gradient (BPG) method. Numerical experiments for sparse-view computational tomography show that a convolutional sparsifying regularizer learned via CAOL significantly improves reconstruction quality compared to a conventional edge-preserving regularizer. Using more and wider kernels in a learned regularizer better preserves edges in reconstructed images.  more » « less
Award ID(s):
1838179
PAR ID:
10127593
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Image Processing
ISSN:
1057-7149
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many modern approaches to image reconstruction are based on learning a regularizer that implicitly encodes a prior over the space of images. For large-scale images common in imaging domains like remote sensing, medical imaging, astronomy, and others, learning the entire image prior requires an often-impractical amount of training data. This work describes a deep image patch-based regularization approach that can be incorporated into a variety of modern algorithms. Learning a regularizer amounts to learning the a prior for image patches, greatly reducing the dimension of the space to be learned and hence the sample complexity. Demonstrations in a remote sensing application illustrates that learning patch-based regularizers produces high-quality reconstructions and even permits learning from a single ground-truth image. 
    more » « less
  2. We give the first provably efficient algorithm for learning a one hidden layer convolutional network with respect to a general class of (potentially overlapping) patches. Additionally, our algorithm requires only mild conditions on the underlying distribution. We prove that our framework captures commonly used schemes from computer vision, including one-dimensional and two-dimensional "patch and stride" convolutions. Our algorithm-- Convotron -- is inspired by recent work applying isotonic regression to learning neural networks. Convotron uses a simple, iterative update rule that is stochastic in nature and tolerant to noise (requires only that the conditional mean function is a one layer convolutional network, as opposed to the realizable setting). In contrast to gradient descent, Convotron requires no special initialization or learning-rate tuning to converge to the global optimum. We also point out that learning one hidden convolutional layer with respect to a Gaussian distribution and just one disjoint patch P (the other patches may be arbitrary) is easy in the following sense: Convotron can efficiently recover the hidden weight vector by updating only in the direction of P. 
    more » « less
  3. The recent trend in regularization methods for inverse problems is to replace handcrafted sparsifying operators with datadriven approaches. Although using such machine learning techniques often improves image reconstruction methods, the results can depend significantly on the learning methodology. This paper compares two supervised learning methods. First, the paper considers a transform learning approach and, to learn the transform, introduces a variant on the Procrustes method for wide matrices with orthogonal rows. Second, we consider a bilevel convolutional filter learning approach. Numerical experiments show the learned transform performs worse for denoising than both the handcrafted finite difference transform and the learned filters, which perform similarly. Our results motivate the use of bilevel learning. 
    more » « less
  4. null (Ed.)
    Convolution is a central operation in Convolutional Neural Networks (CNNs), which applies a kernel to overlapping regions shifted across the image. However, because of the strong correlations in real-world image data, convolutional kernels are in effect re-learning redundant data. In this work, we show that this redundancy has made neural network training challenging, and propose network deconvolution, a procedure which optimally removes pixel-wise and channel-wise correlations before the data is fed into each layer. Network deconvolution can be efficiently calculated at a fraction of the computational cost of a convolution layer. We also show that the deconvolution filters in the first layer of the network resemble the center-surround structure found in biological neurons in the visual regions of the brain. Filtering with such kernels results in a sparse representation, a desired property that has been missing in the training of neural networks. Learning from the sparse representation promotes faster convergence and superior results without the use of batch normalization. We apply our network deconvolution operation to 10 modern neural network models by replacing batch normalization within each. Extensive experiments show that the network deconvolution operation is able to deliver performance improvement in all cases on the CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Cityscapes, and ImageNet datasets. 
    more » « less
  5. Convolution is a central operation in Convolutional Neural Networks (CNNs), which applies a kernel to overlapping regions shifted across the image. However, because of the strong correlations in real-world image data, convolutional kernels are in effect re-learning redundant data. In this work, we show that this redundancy has made neural network training challenging, and propose network deconvolution, a procedure which optimally removes pixel-wise and channel-wise correlations before the data is fed into each layer. Network deconvolution can be efficiently calculated at a fraction of the computational cost of a convolution layer. We also show that the deconvolution filters in the first layer of the network resemble the center-surround structure found in biological neurons in the visual regions of the brain. Filtering with such kernels results in a sparse representation, a desired property that has been missing in the training of neural networks. Learning from the sparse representation promotes faster convergence and superior results without the use of batch normalization. We apply our network deconvolution operation to 10 modern neural network models by replacing batch normalization within each. Extensive experiments show that the network deconvolution operation is able to deliver performance improvement in all cases on the CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Cityscapes, and ImageNet datasets. 
    more » « less