skip to main content

Title: The impact of (n,γ) reaction rate uncertainties on the predicted abundances of i-process elements with 32 ≤ Z ≤ 48 in the metal-poor star HD94028

Several anomalous elemental abundance ratios have been observed in the metal-poor star HD94028. We assume that its high [As/Ge] ratio is a product of a weak intermediate (i) neutron-capture process. Given that observational errors are usually smaller than predicted nuclear physics uncertainties, we have first set-up a benchmark one-zone i-process nucleosynthesis simulation results of which provide the best fit to the observed abundances. We have then performed Monte Carlo simulations in which 113 relevant (n,γ) reaction rates of unstable species were randomly varied within Hauser–Feshbach model uncertainty ranges for each reaction to estimate the impact on the predicted stellar abundances. One of the interesting results of these simulations is a double-peaked distribution of the As abundance, which is caused by the variation of the 75Ga (n,γ) cross-section. This variation strongly anticorrelates with the predicted As abundance, confirming the necessity for improved theoretical or experimental bounds on this cross-section. The 66Ni (n,γ) reaction is found to behave as a major bottleneck for the i-process nucleosynthesis. Our analysis finds the Pearson product–moment correlation coefficient rP > 0.2 for all of the i-process elements with 32 ≤ Z ≤ 42, with significant changes in their predicted abundances showing up when the rate of this reaction is reduced to its theoretically constrained lower bound. Our results are applicable to any other stellar nucleosynthesis site with the similar i-process conditions, such as Sakurai’s object (V4334 Sagittarii) or rapidly accreting white dwarfs.

more » « less
Award ID(s):
1913554 1927130
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 5179-5187
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The abundances of neutron (n)-capture elements in the carbon-enhanced metal-poor (CEMP)-r/s stars agree with predictions of intermediate n-density nucleosynthesis, at Nn ∼ 1013–1015 cm−3, in rapidly accreting white dwarfs (RAWDs). We have performed Monte Carlo simulations of this intermediate-process (i-process) nucleosynthesis to determine the impact of (n,γ) reaction rate uncertainties of 164 unstable isotopes, from 131I to 189Hf, on the predicted abundances of 18 elements from Ba to W. The impact study is based on two representative one-zone models with constant values of Nn = 3.16 × 1014 and 3.16 × 1013 cm−3 and on a multizone model based on a realistic stellar evolution simulation of He-shell convection entraining H in a RAWD model with [Fe/H] = −2.6. For each of the selected elements, we have identified up to two (n,γ) reactions having the strongest correlations between their rate variations constrained by Hauser–Feshbach computations and the predicted abundances, with the Pearson product–moment correlation coefficients |rP| > 0.15. We find that the discrepancies between the predicted and observed abundances of Ba and Pr in the CEMP-i star CS 31062−050 are significantly diminished if the rate of 137Cs(n,γ)138Cs is reduced and the rates of 141Ba(n,γ)142Ba or 141La(n,γ)142La increased. The uncertainties of temperature-dependent β-decay rates of the same unstable isotopes have a negligible effect on the predicted abundances. One-zone Monte Carlo simulations can be used instead of computationally time-consuming multizone Monte Carlo simulations in reaction rate uncertainty studies if they use comparable values of Nn. We discuss the key challenges that RAWD simulations of i process for CEMP-i stars meet by contrasting them with recently published low-Z asymptotic giant branch (AGB) i process. 
    more » « less
  2. Abstract Despite the advances in discovering new nuclei, modeling microscopic nuclear structure, nuclear reactors, and stellar nucleosynthesis, we still lack a systemic tool, such as a network approach, to understand the structure and dynamics of over 70 thousands reactions compiled in JINA REACLIB. To this end, we develop an analysis framework, under which it is simple to know which reactions generally are possible and which are not, by counting neutrons and protons incoming to and outgoing from any target nucleus. Specifically, we assemble here a nuclear reaction network in which a node represents a nuclide, and a link represents a direct reaction between nuclides. Interestingly, the degree distribution of nuclear network exhibits a bimodal distribution that significantly deviates from the common power-law distribution of scale-free networks and Poisson distribution of random networks. Based on the dynamics from the cross section parameterizations in REACLIB, we surprisingly find that the distribution is universal for reactions with a rate below the threshold, λ < e − T γ , where T is the temperature and γ ≈ 1.05. Moreover, we discover three rules that govern the structure pattern of nuclear reaction network: (i) reaction-type is determined by linking choices, (ii) network distances between the reacting nuclides on 2D grid of Z vs N of nuclides are short, and (iii) each node in- and out-degrees are close to each other. By incorporating these three rules, our model universally unveils the underlying nuclear reaction patterns hidden in a large and dense nuclear reaction network regardless of nuclide chart expansions. It enables us to predict missing links that represent possible new nuclear reactions not yet discovered. 
    more » « less
  3. Abstract

    The element abundance pattern found in Milky Way disk stars is close to two-dimensional, dominated by production from one prompt process and one delayed process. This simplicity is remarkable, since the elements are produced by a multitude of nucleosynthesis mechanisms operating in stars with a wide range of progenitor masses. We fit the abundances of 14 elements for 48,659 red-giant stars from APOGEE Data Release 17 using a flexible, data-drivenK-process model—dubbedKPM. In our fiducial model, withK= 2, each abundance in each star is described as the sum of a prompt and a delayed process contribution. We find thatKPMwithK= 2 is able to explain the abundances well, recover the observed abundance bimodality, and detect the bimodality over a greater range in metallicity than has previously been possible. We compare to prior work by Weinberg et al., finding thatKPMproduces similar results, but thatKPMbetter predicts stellar abundances, especially for the elements C+N and Mn and for stars at supersolar metallicities. The model fixes the relative contribution of the prompt and delayed processes to two elements to break degeneracies and improve interpretability; we find that some of the nucleosynthetic implications are dependent upon these detailed choices. We find that moving to four processes adds flexibility and improves the model’s ability to predict the stellar abundances, but does not qualitatively change the story. The results ofKPMwill help us to interpret and constrain the formation of the Galaxy disk, the relationship between abundances and ages, and the physics of nucleosynthesis.

    more » « less
  4. Abstract

    Accurate nuclear reaction rates for26P(p,γ)27S are pivotal for a comprehensive understanding of therp-process nucleosynthesis path in the region of proton-rich sulfur and phosphorus isotopes. However, large uncertainties still exist in the current rate of26P(p,γ)27S because of the lack of nuclear mass and energy level structure information for27S. We reevaluate this reaction rate using the experimentally constrained27S mass, together with the shell model predicted level structure. It is found that the26P(p,γ)27S reaction rate is dominated by a direct capture reaction mechanism despite the presence of three resonances atE= 1.104, 1.597, and 1.777 MeV above the proton threshold in27S. The new rate is overall smaller than the other previous rates from the Hauser–Feshbach statistical model by at least 1 order of magnitude in the temperature range of X-ray burst interest. In addition, we consistently update the photodisintegration rate using the new27S mass. The influence of new rates of forward and reverse reaction in the abundances of isotopes produced in therp-process is explored by postprocessing nucleosynthesis calculations. The final abundance ratio of27S/26P obtained using the new rates is only 10% of that from the old rate. The abundance flow calculations show that the reaction path26P(p,γ)27S(β+,ν)27P is not as important as previously thought for producing27P. The adoption of the new reaction rates for26P(p,γ)27S only reduces the final production of aluminum by 7.1% and has no discernible impact on the yield of other elements.

    more » « less
  5. Abstract Analysis of bulk meteorite compositions has revealed small isotopic variations due to the presence of material (e.g., stardust) that preserved the signature of nuclear reactions occurring in specific stellar sites. The interpretation of such anomalies provides evidence for the environment of the birth of the Sun, its accretion process, the evolution of the solar proto-planetary disk, and the formation of the planets. A crucial element of such interpretation is the comparison of the observed anomalies to predictions from models of stellar nucleosynthesis. To date, however, this comparison has been limited to a handful of model predictions. This is mostly because the calculated stellar abundances need to be transformed into a specific representation, which nuclear astrophysicists and stellar nucleosynthesis researchers are not familiar with. Here, we show in detail that this representation is needed to account for mass fractionation effects in meteorite data that can be generated both in nature and during instrumental analysis. We explain the required internal normalisation to a selected isotopic ratio, describe the motivations behind such representation more widely, and provide the tools to perform the calculations. Then, we present some examples considering two elements produced by the slow neutron-capture ( s ) process: Sr and Mo. We show which specific representations for the Sr isotopic composition calculated by s -process models better disentangle the nucleosynthetic signatures from stars of different metallicity. For Mo, the comparison between data and models is improved due to a recent re-analysis of the $$^{95}$$ 95 Mo neutron-capture cross section. 
    more » « less