skip to main content

Title: Spectral library of age-benchmark low-mass stars and brown dwarfs
ABSTRACT

In recent years, some extremely red brown dwarfs have been discovered. They were believed to have a low surface gravity, but many of their spectral characteristics are similar to those of high-surface-gravity brown dwarfs, showing that the spectral characteristics of young brown dwarfs are poorly understood. We aim to test surface-gravity indicators in late-M and early-L brown dwarf spectra using data obtained with the X-shooter spectrograph at the Very Large Telescope. We select a benchmark sample of brown dwarf members of Chamaeleon I (∼2 Myr), Upper Scorpius (5−10 Myr), the Pleiades (132 ± 27 Myr) and Praesepe (590−790 Myr) with well-constrained ages and similar metallicities. We provide a consistent spectral classification of the sample in the optical and in the near-infrared. We measure the equivalent widths of their alkali lines, finding that they have a moderate correlation with age, especially for objects with spectral types M8 and later. We use spectral indices defined in the literature to estimate surface gravity, finding that their gravity assignment is accurate for 75 per cent of our sample. We investigate the correlation between red colour and age, finding that after ∼10 Myr, the colour does not change significantly for our sample with spectral types M6.0–L3.0. In this case, the red colours might be more » associated with circumstellar discs, ring structures, extinction, or viewing angle. Finally, we calculate the bolometric luminosity, and J and K bolometric corrections for our sample. We find that six objects are overluminous compared with other members of the same association. These objects are flagged as binary candidates by the Gaia survey.

« less
Authors:
 ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10128733
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
491
Issue:
4
Page Range or eLocation-ID:
p. 5925-5950
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1 σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS ( J – K s = 2.72), low surface gravity source that we classify as L6–L8 γ . Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are allmore »consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s −2 , and a mass of 15 ± 5 M Jup . We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess.« less
  2. ABSTRACT

    We identify two ultra-cool (${T_\mathrm{eff}}\lt 4000$ K) metal-polluted (DZ) white dwarfs WD J2147−4035 and WD J1922+0233 as the coolest and second coolest DZ stars known to date with ${T_\mathrm{eff}}\approx 3050$ K and ${T_\mathrm{eff}}\approx 3340$ K, respectively. Strong atmospheric collision-induced absorption (CIA) causes the suppression of red optical and infrared flux in WD J1922+0233, resulting in an unusually blue colour given its low temperature. WD J2147−4035 has moderate infrared CIA yet has the reddest optical colours known for a DZ white dwarf. Microphysics improvements to the non-ideal effects and CIA opacities in our model atmosphere code yields reasonable solutions to observations of these ultra-cool stars. WD J2147−4035 has a cooling age of over 10 Gyr which is the largest known for a DZ white dwarf, whereas WD J1922+0233 is slightly younger with a cooling age of 9 Gyr. Galactic kinematics calculations from precise Gaia EDR3 astrometry reveal these ultra-cool DZ stars as likely members of the Galactic disc thus they could be pivotal objects in future studies constraining an upper age limit for the disc of the Milky Way. We present intermediate-resolution spectroscopy for both objects, which provides the first spectroscopic observations of WD J2147−4035. Detections of sodium and potassium are made in both white dwarfs, in addition to calcium in WD J1922+0233more »and lithium in WD J2147−4035. We identify the magnetic nature of WD J2147−4035 from Zeeman splitting in the lithium line and also make a tentative detection of carbon, so we classify this star as DZQH. WD J1922+0233 likely accreted planetary crust debris, while the debris composition that polluted WD J2147−4035 remains unconstrained.

    « less
  3. Abstract

    We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with anmore »isochronal age of3110+22Myr and a mass of0.300.03+0.04M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups.

    « less
  4. Abstract

    We present a survey for photometric variability in young, low-mass brown dwarfs with the Spitzer Space Telescope. The 23 objects in our sample show robust signatures of youth and share properties with directly imaged exoplanets. We present three new young objects: 2MASS J03492367+0635078, 2MASS J09512690−8023553, and 2MASS J07180871−6415310. We detect variability in 13 young objects, and find that young brown dwarfs are highly likely to display variability across the L2–T4 spectral type range. In contrast, the field dwarf variability occurrence rate drops for spectral types >L9. We examine the variability amplitudes of young objects and find an enhancement in maximum amplitudes compared to field dwarfs. We speculate that the observed range of amplitudes within a spectral type may be influenced by secondary effects such as viewing inclination and/or rotation period. We combine our new rotation periods with the literature to investigate the effects of mass on angular momentum evolution. While high-mass brown dwarfs (>30MJup) spin up over time, the same trend is not apparent for lower-mass objects (<30MJup), likely due to the small number of measured periods for old, low-mass objects. The rotation periods of companion brown dwarfs and planetary-mass objects are consistent with those of isolated objects withmore »similar ages and masses, suggesting similar angular momentum histories. Within the AB Doradus group, we find a high-variability occurrence rate and evidence for common angular momentum evolution. The results are encouraging for future variability searches in directly imaged exoplanets with facilities such as the James Webb Space Telescope and 30 m telescopes.

    « less
  5. Abstract

    M dwarfs are favorable targets for exoplanet detection with current instrumentation, but stellar companions can induce false positives and inhibit planet characterization. Knowledge of stellar companions is also critical to our understanding of how binary stars form and evolve. We have therefore conducted a survey of stellar companions around nearby M dwarfs, and here we present our new discoveries. Using the Differential Speckle Survey Instrument at the 4.3 m Lowell Discovery Telescope, and the similar NN-EXPLORE Exoplanet Stellar Speckle Imager at the 3.5 m WIYN telescope, we carried out a volume-limited survey of M-dwarf multiplicity to 15 parsecs, with a special emphasis on including the later M dwarfs that were overlooked in previous surveys. Additional brighter targets at larger distances were included for a total sample size of 1070 M dwarfs. Observations of these 1070 targets revealed 26 new companions; 22 of these systems were previously thought to be single. If all new discoveries are confirmed, then the number of known multiples in the sample will increase by 7.6%. Using our observed properties, as well as the parallaxes and 2MASSKmagnitudes for these objects, we calculate the projected separation, and estimate the mass ratio and component spectral types, for thesemore »systems. We report the discovery of a new M-dwarf companion to the white dwarf Wolf 672 A, which hosts a known M-dwarf companion as well, making the system trinary. We also examine the possibility that the new companion to 2MASS J13092185-2330350 is a brown dwarf. Finally, we discuss initial insights from the POKEMON survey.

    « less