skip to main content

Title: Effects of fluid diffusivity on hydraulic fracturing processes using visual analysis
Hydraulic fracturing arises as a method to enhance oil and gas production, and also as a way to recover geothermal energy. It is, therefore, essential to understand how injecting a fluid inside a rock reservoir will affect its surroundings. Hydraulic fracturing processes can be strongly affected by the interaction between two mechanisms: the elastic effects caused by the hydraulic pressure applied inside fractures and the poro-mechanical effects caused by the fluid infiltration inside the porous media (i.e. fluid diffusivity); this, in turn, is affected by the injection rate used. The interaction between poro-elastic mechanisms, particularly the effect of the fluid diffusivity, in the hydraulic fracturing processes is not well-understood and is investigated in this paper. This study aims to experimentally and theoretically comprehend the effects of the injection rate on crack propagation and on pore pressures, when flaws pre-fabricated in prismatic gypsum specimens are hydraulically pressurized. In order to accomplish this, laboratory experiments were performed using two injection rates (2 and 20 ml/min), applied by an apparatus consisting of a pressure enclosure with an impermeable membrane in both faces of the specimen, which allowed one to observe the growth of a fluid front from the pre-fabricated flaws to the unsaturated porous media (i.e. rock), before fracturing took place. It was observed that the fracturing pressures and patterns are injection-rate-dependent. This was interpreted to be caused by the different pore pressures that developed in the rock matrix, which resulted from the significantly distinct fluid fronts observed for the two injection rates tested.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
US Rock Mechanics/Geomechanics Symposium
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The spatiotemporal patterns of injection‐induced seismicity (IIS) are commonly interpreted with the concept of a triggering front, which propagates in a diffusion‐like manner with an associated diffusivity parameter. Here, we refer to this diffusivity as the “seismic diffusivity.” Several previous studies implicitly assume that seismic diffusivity is equivalent to the effective hydraulic diffusivity of the subsurface, which describes the behavior of the mean pressure field in heterogeneous porous media. Seismicity‐based approaches for hydraulic characterization or simulations of IIS using domains of homogeneous equivalent porous media are implicitly based on this assumed equivalence. However, seismicity is expected to propagate with the threshold triggering pressure, and thus not be controlled by the evolution of the mean pressure field. We present numerical simulations of fluid injection to compare the seismic and effective hydraulic diffusivities in heterogeneous formations (including fractured rock). The numerical model combines uncoupled, linear pressure diffusion with the Mohr‐Coulomb failure criterion to simulate IIS. We demonstrate that connected pathways of relatively high hydraulic diffusivity in heterogeneous media (particularly in fractured rock domains) allow the threshold triggering pressure to propagate more rapidly than predicted by the effective hydraulic diffusivity. As a result, the seismic diffusivity is greater than the effective hydraulic diffusivity in heterogeneous porous media, possibly by an order of magnitude or more. Additionally, we present a case study of IIS near Soultz‐sous‐Forêts where seismic diffusivity is found to be at least one order of magnitude larger than the effective hydraulic diffusivity.

    more » « less
  2. Abstract

    Fluid injection into rock formations can either produce complex branched hydraulic fractures, create simple planar fractures, or be dominated by porous diffusion. Currently, the optimum injection parameters to create branched fractures are unknown. We conducted repeatable hydraulic fracturing experiments using analog‐rock samples with controlled heterogeneity to quantify the fluid parameters that promote fracture branching. A large range of injection rates and fluid viscosities were used to investigate their effects on induced fracture patterns. Paired with a simple analytical model, our results identify the threshold at which fracture transitions from an isolated planar crack to branched cracks when closed natural fractures exist. These results demonstrate that this transition can be controlled by injection rate and fluid viscosity. In relation to the field practices, the present model predicts slickwater and lower viscosity fluid injections promote fracture branching, with the Marcellus shale used as an example.

    more » « less
  3. Abstract Carbonate sediments play a prominent role on the global geological stage as they store more than $$60\%$$ 60 % of world’s oil and $$40\%$$ 40 % of world’s gas reserves. Prediction of the deformation and failure of porous carbonates is, therefore, essential to minimise reservoir compaction, fault reactivation, or wellbore instability. This relies on our understanding of the mechanisms underlying the observed inelastic response to fluid injection or deviatoric stress perturbations. Understanding the impact of deformation/failure on the hydraulic properties of the rock is also essential as injection/production rates will be affected. In this work, we present new experimental results from triaxial deformation experiments carried out to elucidate the behaviour of a porous limestone reservoir analogue (Savonnières limestone). Drained triaxial and isotropic compression tests were conducted at five different confining pressures in dry and water-saturated conditions. Stress–strain data and X-ray tomography images of the rock indicate two distinct types of deformation and failure regimes: at low confinement (10 MPa) brittle failure in the form of dilatant shear banding was dominant; whereas at higher confinement compaction bands orthogonal to the maximum principal stress formed. In addition to the pore pressure effect, the presence of water in the pore space significantly weakened the rock, thereby shrinking the yield envelope compared to the dry conditions, and shifted the brittle–ductile transition to lower effective confining pressures (from 35 MPa to 29 MPa). Finally, permeability measurements during deformation show a reduction of an order of magnitude in the ductile regime due to the formation of the compaction bands. These results highlight the importance of considering the role of the saturating fluid in the brittle–ductile response of porous rocks and elucidate some of the microstructural processes taking place during this transition. 
    more » « less
  4. Abstract

    We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems.

    more » « less
  5. ABSTRACT Frictional heating during earthquake rupture raises the fault-zone fluid pressure, which affects dynamic rupture and seismic radiation. Here, we investigate two key parameters governing thermal pressurization of pore fluids – hydraulic diffusivity and shear-zone half-width – and their effects on earthquake rupture dynamics, kinematic source properties, and ground motions. We conduct 3D strike-slip dynamic rupture simulations assuming a rate-and-state dependent friction law with strong velocity weakening coupled to thermal-pressurization of pore fluids. Dynamic rupture evolution and ground shaking are densely evaluated across the fault and Earth’s surface to analyze the variations of rupture parameters (slip, peak slip rate, rupture speed, and rise time), correlations among rupture parameters, and variability of peak ground velocity. Our simulations reveal how variations in thermal-pressurization affect earthquake rupture properties. We find that the mean slip and rise time decrease with increasing hydraulic diffusivity, whereas mean rupture speed and peak slip-rate remain almost constant. Mean slip, peak slip-rate, and rupture speed decrease with increasing shear-zone half-width, whereas mean rise time increases. Shear-zone half-width distinctly affects the correlation between rupture parameters, especially for parameter pairs (slip, rupture speed), (peak slip-rate, rupture speed), and (rupture speed, rise time). Hydraulic diffusivity has negligible effects on these correlations. Variations in shear-zone half-width primarily impact rupture speed, which then may affect other rupture parameters. We find a negative correlation between slip and peak slip-rate, unlike simpler dynamic rupture models. Mean peak ground velocities decrease faster with increasing shear-zone half-width than with increasing hydraulic diffusivity, whereas ground-motion variability is similarly affected by both the parameters. Our results show that shear-zone half-width affects rupture dynamics, kinematic rupture properties, and ground shaking more strongly than hydraulic diffusivity. We interpret the importance of shear-zone half-width based on the characteristic time of diffusion. Our findings may inform pseudodynamic rupture generators and guide future studies on how to account for thermal-pressurization effects. 
    more » « less