1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to a more-efficient, shared-spectrum approach in some bands of the radio frequency spectrum. A STEM workforce that understands the radio frequency spectrum and applications that use the spectrum is needed to further increase spectrum efficiency and cost-effectiveness of wireless systems over the next several decades to meet anticipated and unanticipated increases in wireless data capacity. 2. Relevant background including literature search examples if appropriate CISCO Systems’ annual survey indicates continued strong growth in demand for wireless data capacity. Meanwhile, undergraduate electrical and computer engineering courses in communication systems, electromagnetics, and networks tend to emphasize mathematical and theoretical fundamentals and higher-layer protocols, withmore »
Exploiting Beneficial Information Sharing Among Autonomous Vehicles
As communication technologies develop, an au- tonomous vehicle will receive information not only from its own sensing system but also from infrastructures and other vehicles through communication. This paper discusses how to exploit a sequence of future information that is shared among autonomous vehicles, including the planned positions, the velocities and the lane numbers. A hybrid system model is constructed, and a control policy is designed to utilize shared sequence information for making navigation decisions. For the high-level discrete state transitions, the shared information is used to determine when to change lane, if lane changing will bring reward for the autonomous vehicle and there exists a feasible continuous state controller. For the low-level continuous state space controller generation, the shared information can relax the safety interval constraints in the existing model predictive control method. In the system level, the information sharing can increase the traffic flow and improve driving comfort. We demonstrate the advantages of information sharing in control and navigation in simulation.
- Publication Date:
- NSF-PAR ID:
- 10129200
- Journal Name:
- IEEE 58th Conference on Decision and Control (CDC)
- Page Range or eLocation-ID:
- 2226-2232
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To prepare for the age of the intelligent, highly connected, and autonomous vehicle, a new approach to concepts of granting consent, managing privacy, and dealing with the need to interact quickly and meaningfully is needed. Additionally, in an environment where personal data is rapidly shared with a multitude of independent parties, there exists a need to reduce the information asymmetry that currently exists between the user and data collecting entities. This Article rethinks the traditional notice and consent model in the context of real-time communication between vehicles or vehicles and infrastructure or vehicles and other surroundings and proposes a re-engineering of current privacy concepts to prepare for a rapidly approaching digital future. In this future, multiple independent actors such as vehicles or other machines may seek personal information at a rate that makes the traditional informed consent model untenable. This Article proposes a two-step approach: As an attempt to meet and balance user needs for a seamless experience while preserving their rights to privacy, the first step is a less static consent paradigm able to better support personal data in systems which use machine based real time communication and automation. In addition, the article proposes a radical re-thinking of themore »
-
Road condition is an important environmental factor for autonomous vehicle control. A dramatic change in the road condition from the nominal status is a source of uncertainty that can lead to a system failure. Once the vehicle encounters an uncertain environment, such as hitting an ice patch, it is too late to reduce the speed, and the vehicle can lose control. To cope with unforeseen uncertainties in advance, we study a proactive robust adaptive control architecture for autonomous vehicles' lane-keeping control problems. The data center generates a prior environmental uncertainty estimate by combining weather forecasts and measurements from anonymous vehicles through a spatio-temporal filter. The prior estimate contributes to designing a robust heading controller and nominal longitudinal velocity for proactive adaptation to each new condition. The control parameters are updated based on posterior information fusion with on-board measurements.
-
Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keepingmore »
-
This study focuses on how to improve the merge control prior to lane reduction points due to either accidents or constructions. A Cooperative Car-following and Merging (CCM) control strategy is proposed considering the coexistence of Automated Vehicles (AVs) and Human-4 Driven Vehicles (HDVs). CCM introduces a modified/generalized Cooperative Adaptive Cruise Control (CACC) for vehicle longitudinal control prior to lane reduction points. It also takes courtesy into account to ensure that AVs behave responsibly and ethically. CCM is evaluated using microscopic traffic simulation and compared with no control and CACC merge strategies. The results show that CCM consistently generates the lowest delays and highest throughputs approaching the theoretical capacity. Its safety benefits are also found to be significant based on vehicle trajectories and density maps. AVs in this study do not need to be fully automated and can be at Level-1 automation. CCM only requires automated longitudinal control such as Adaptive Cruise Control (ACC) and information sharing among vehicles, and ACC is already commercially available on many new vehicles. Also, it does not need 100% ACC penetration, presenting itself as a promising and practical solution for improving traffic operations in lane reduction transition areas such as highway work zones.