Abstract The nature of dark matter is unknown and calls for a systematical search. For axion dark matter, such a search relies on finding feeble random noise arising from the weak coupling between dark matter and microwave haloscopes. We model such process as a quantum channel and derive the fundamental precision limit of noise sensing. An entanglement-assisted strategy based on two-mode squeezed vacuum is thereby demonstrated optimal, while the optimality of a single-mode squeezed vacuum is found limited to the lossless case. We propose a “nulling” measurement (squeezing and photon counting) to achieve the optimal performances. In terms of the scan rate, even with 20-decibel of strength, single-mode squeezing still underperforms the vacuum limit which is achieved by photon counting on vacuum input; while the two-mode squeezed vacuum provides large and close-to-optimum advantage over the vacuum limit, thus more exotic quantum resources are no longer required. Our results highlight the necessity of entanglement assistance and microwave photon counting in dark matter search.
more »
« less
Effect of imperfect homodyne visibility on multi-spatial-mode two-mode squeezing measurements
We study the effect of homodyne detector visibility on the measurement of quadrature squeezing for a spatially multi-mode source of two-mode squeezed light. Sources like optical parametric oscillators (OPO) typically produce squeezing in a single spatial mode because the nonlinear medium is within a mode-selective optical cavity. For such a source, imperfect interference visibility in the homodyne detector couples in additional vacuum noise, which can be accounted for by introducing an equivalent loss term. In a free-space multi-spatial-mode system imperfect homodyne detector visibility can couple in uncorrelated squeezed modes, and hence can cause faster degradation of the measured squeezing. We show experimentally the dependence of the measured squeezing level on the visibility of homodyne detectors used to probe two-mode squeezed states produced by a free space four-wave mixing process in85Rb vapor, and also demonstrate that a simple theoretical model agrees closely with the experimental data.
more »
« less
- Award ID(s):
- 1708036
- PAR ID:
- 10129504
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 1
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 652
- Size(s):
- Article No. 652
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advancements in multi-mode Gottesman-Kitaev-Preskill (GKP) codes have shown great promise in enhancing the protection of both discrete and analog quantum information. This broadened range of protection brings opportunities beyond quantum computing to benefit quantum sensing by safeguarding squeezing — the essential resource in many quantum metrology protocols. However, the potential for quantum sensing to benefit quantum error correction has been less explored. In this work, we provide a unique example where techniques from quantum sensing can be applied to improve multi-mode GKP codes. Inspired by distributed quantum sensing, we propose the distributed two-mode squeezing (dtms) GKP codes that offer benefits in error correction with minimal active encoding operations. Indeed, the proposed codes rely on a (active) two-mode squeezing element and an array of beamsplitters that effectively distributes continuous-variable correlations to many GKP ancillae, similar to continuous-variable distributed quantum sensing. Despite this simple construction, the code distance achievable with dtms-GKP qubit codes is comparable to previous results obtained through brute-force numerical search \cite{lin2023closest}. Moreover, these codes enable analog noise suppression beyond that of the best-known two-mode codes \cite{noh2020o2o} without requiring an additional squeezer. We also provide a simple two-stage decoder for the proposed codes, which appears near-optimal for the case of two modes and permits analytical evaluation.more » « less
-
We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing (TMS) of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.more » « less
-
A<sc>bstract</sc> We propose to use the nuclear spin excitation in the ferromagnetic A1phase of the superfluid3He for the axion dark matter detection. This approach is striking in that it is sensitive to the axion-nucleon coupling, one of the most important features of the QCD axion introduced to solve the strong CP problem. We review a quantum mechanical description of the nuclear spin excitation and apply it to the estimation of the axion-induced spin excitation rate. We also describe a possible detection method of the spin excitation in detail and show that the combination of the squeezing of the final state with the Josephson parametric amplifier and the homodyne measurement can enhance the sensitivity. It turns out that this approach gives good sensitivity to the axion dark matter with the mass of$$ \mathcal{O} $$ (1) μeV depending on the size of the external magnetic field. We estimate the parameters of experimental setups, e.g., the detector volume and the amplitude of squeezing, required to reach the QCD axion parameter space.more » « less
-
We report some of the most intense Z‐mode and O‐mode observations obtained by the Juno spacecraft while in orbit about Jupiter in a low to mid‐latitude region near the inner edge of the Io torus. We have been able to estimate the density of the plasma in this region based on the lower frequency cutoff of the observed Z‐mode emission. The results are compatible with the electron density measurements of the Jovian Auroral Distributions Experiment (JADE), on board the Juno spacecraft, if we account for unmeasured cold plasma. Direction‐finding measurements indicate that the Z‐ and O‐mode emission have distinct source regions. We have also used the measured phase space density of the JADE and the Jupiter energetic particle detector instruments to calculate estimated local growth rates of the observed O‐mode and Z‐mode emission assuming a loss cone instability and quasilinear analysis. The results suggest the emissions were observed near, but not within, a source region, and the free energy source is consistent with a loss cone. We have thus carried out the quasilinear wave analysis of the assumed remote Z‐ and O‐mode wave growths. It is shown that the remotely generated waves, propagated through an inhomogeneous medium to the satellite location, may account for the observed wave characteristics. The importance of Z‐mode in accelerating electrons in the inner Jovian magnetosphere makes these new wave mode confirmations at Jupiter of particular interest.more » « less
An official website of the United States government
