skip to main content


Title: Bosonic pair production and squeezing for optical phase measurements in long-lived dipoles coupled to a cavity
We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing (TMS) of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.  more » « less
Award ID(s):
2016244
NSF-PAR ID:
10340286
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit 1–3  set by projections of individual atoms. Large amounts of entanglement 4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles 4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity $$3\,.\,{4}_{-0.9}^{+1.1}$$ 3 . 4 − 0.9 + 1.1  dB and $$2\,.\,{5}_{-0.6}^{+0.6}$$ 2 . 5 − 0.6 + 0.6  dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity $$1\,.\,{7}_{-0.5}^{+0.5}$$ 1 . 7 − 0.5 + 0.5  dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors 17,18 , searches for new physics, particles and fields 19–23 , future advanced gravitational wave detectors 24,25 and accessing beyond mean-field quantum many-body physics 26–30 . 
    more » « less
  2. Abstract

    Graph states are a broad family of entangled quantum states, each defined by a graph composed of edges representing the correlations between subsystems. Such states constitute versatile resources for quantum computation and quantum-enhanced measurement. Their generation and engineering require a high level of control over entanglement. Here we report on the generation of continuous-variable graph states of atomic spin ensembles, which form the nodes of the graph. We program the entanglement structure encoded in the graph edges by combining global photon-mediated interactions in an optical cavity with local spin rotations. By tuning the entanglement between two subsystems, we either localize correlations within each subsystem or enable Einstein–Podolsky–Rosen steering—a strong form of entanglement that enables the extraction of precise information from one subsystem through measurements on the other. We further engineer a four-mode square graph state, highlighting the flexibility of our approach. Our method is scalable to larger and more complex graphs, laying groundwork for measurement-based quantum computation and advanced protocols in quantum metrology.

     
    more » « less
  3. We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping 87Rb atoms that are near maximally coupled to the cavity's standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions. 
    more » « less
  4. We analyze the dynamics leading to radiative cooling of an atomic ensemble confined inside an optical cavity when the atomic dipolar transitions are incoherently pumped and can synchronize. Our study is performed in the semiclassical regime and assumes that cavity decay is the largest rate in the system dynamics. We identify three regimes characterizing the cooling. At first hot atoms are individually cooled by the cavity friction forces. After this stage, the atoms’ center-of-mass motion is further cooled by the coupling to the internal degrees of freedom while the dipoles synchronize. In the latest stage dipole-dipole correlations are stationary and the center-of-mass motion is determined by the interplay between friction and dispersive forces due to the coupling with the collective dipole. We analyze this asymptotic regime by means of a mean-field model and show that the width of the momentum distribution can be of the order of the photon recoil. Furthermore, the internal excitations oscillate spatially with the cavity standing wave forming an antiferromagnetic-like order. 
    more » « less
  5. Atom interferometers are powerful tools for both measurements in fundamental physics and inertial sensing applications. Their performance, however, has been limited by the available interrogation time of freely falling atoms in a gravitational field. By suspending the spatially separated atomic wave packets in a lattice formed by the mode of an optical cavity, we realize an interrogation time of 20 seconds. Our approach allows gravitational potentials to be measured by holding, rather than dropping, atoms. After seconds of hold time, gravitational potential energy differences from as little as micrometers of vertical separation generate megaradians of interferometer phase. This trapped geometry suppresses the phase variance due to vibrations by three to four orders of magnitude, overcoming the dominant noise source in atom-interferometric gravimeters.

     
    more » « less