skip to main content

Title: The Impacts of Horizontal Resolution on the Seasonally Dependent Biases of the Northeastern Pacific ITCZ in Coupled Climate Models
ABSTRACT

The double-ITCZ bias has puzzled the climate modeling community for more than two decades. Here we show that, over the northeastern Pacific Ocean, precipitation and sea surface temperature (SST) biases are seasonally dependent in the NCAR CESM1 and 37 CMIP5 models, with positive biases during boreal summer–autumn and negative biases during boreal winter–spring, although the easterly wind bias persists year round. This seasonally dependent bias is found to be caused by the model’s failure to reproduce the climatological seasonal wind reversal of the North American monsoon. During winter–spring, the observed easterly wind dominates, so the simulated stronger wind speed enhances surface evaporation and lowers SST. It is opposite when the observed wind turns to westerly during summer–autumn. An easterly wind bias, mainly evident in the lower troposphere, also occurs in the atmospheric model when the observed SST is prescribed, suggesting that it is of atmospheric origin. When the atmospheric model resolution is doubled in the CESM1, both SST and precipitation are improved in association with the reduced easterly wind bias. During boreal spring, when the double-ITCZ bias is most significant, the northern and southern ITCZ can be improved by 29.0% and 18.8%, respectively, by increasing the horizontal resolution in more » the CESM1. When dividing the 37 CMIP5 models into two groups on the basis of their horizontal resolutions, it is found that both the seasonally dependent biases over the northeastern Pacific and year-round biases over the southeastern Pacific are reduced substantially in the higher-resolution models, with improvement of ~30% in both regions during boreal spring. Close relationships between wind and precipitation biases over the northeastern and southeastern Pacific are also found among CMIP5 models.

« less
Authors:
 ;  
Publication Date:
NSF-PAR ID:
10129518
Journal Name:
Journal of Climate
Volume:
33
Issue:
3
Page Range or eLocation-ID:
p. 941-957
ISSN:
0894-8755
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The eastern Pacific double-ITCZ bias has long been attributed to the warm bias of SST in the southeastern Pacific and associated local air–sea interaction. In this study, we conducted two simulations using the NCAR CESM1.2.1 to demonstrate that significant double-ITCZ bias can still form in the eastern Pacific through air–sea coupled feedback even when there is cold SST bias in the southeastern Pacific, indicating that other nonlocal culprits and mechanisms should be responsible for the double-ITCZ bias in the eastern Pacific. Further analyses show that the oversimulated convection in the northern ITCZ region and Central America in boreal winter may result in biases in the surface wind fields in the tropical northeastern Pacific in the atmospheric model, which favor the cooling of the ocean mixed layer through enhancement of latent heat flux and Ekman upwelling. These biases are passed into the ocean model in coupled simulations and result in a severe cold bias of SST in the northern ITCZ region. The overly cold SST bias persists in the subsequent spring, leading to the suppression of convection in the northern ITCZ region. The enhanced low-level cross-equatorial northerly wind strengthens the wind convergence south of the equator and transports abundant watermore »vapor to the convergence zone, strengthening the southern ITCZ convection. All these processes lead to the disappearance of the northern ITCZ and the enhancement of the southern ITCZ in boreal spring, forming a seasonally alternating double-ITCZ bias. This study suggests that convection biases in the northern ITCZ region and Central America in boreal winter may be a culprit for the double-ITCZ bias in the eastern Pacific.

    « less
  2. Abstract

    Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisturemore »and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ.

    « less
  3. The influence of coupled model sea surface temperature (SST) climatological biases and SST projections on daily convection over the Intra-American Seas (IAS) during the May–November rainy season are examined by clustering (k − means) daily OLR anomalies in ECHAM5 atmospheric global climate model (AGCM) experiments. The AGCM is first forced by 1980–2005 observed SSTs (GOGA), then with climatological, multi-model mean monthly climatological SST bias from 31 CMIP5 coupled models (HIST) and projected SST changes for 2040–2059 (PROJ) and 2080–2099 (PROJ2) imposed on top of observed values. A typology of seven recurrent convection regimes is identified and consists of three dry and four wet regimes, including three regimes characterized by tropical-midlatitude interactions between surface convection cells across the IAS and Rossby wave in the upper-troposphere, and a regime of broad wettening typical of the ITCZ. Compared to an earlier observational study, all seven regimes are reasonably well reproduced in the HIST runs. However, the latter exhibit drier dry regimes, a less wet ITCZ-like wet regime and a southeastward shift of convective anomalies developing across the IAS in the three other regimes, all result in a drier simulated IAS climate compared to GOGA. ECHAM5 projection runs for PROJ and PROJ2 are bothmore »characterized by the inhibition of the broad ITCZ-like wet regime, indicating a significant trend towards more frequent dry weather. Meanwhile, convection anomalies related to tropical-midlatitude interactions are shifted further east of the Caribbean as lead increases. These results suggest more frequent and intense extreme rainfall over the tropical Atlantic and the southeast US, while parts of the Caribbean are projected to experience drier climate. The projected drying, however, is of the same order of magnitude as results from historical SST biases, suggesting that the latter need to be considered in model projections, which might underestimate future IAS drying.« less
  4. Abstract Recent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionallymore »asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia.« less
  5. Abstract Climate models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) vary significantly in their ability to simulate the phase and amplitude of atmospheric stationary waves in the midlatitude Southern Hemisphere. These models also suffer from a double intertropical convergence zone (ITCZ), with excessive precipitation in the tropical eastern South Pacific, and many also suffer from a biased simulation of the dynamics of the Agulhas Current around the tip of South Africa. The intermodel spread in the strength and phasing of SH midlatitude stationary waves in the CMIP archive is shown to be significantly correlated with the double-ITCZ bias and biases in the Agulhas Return Current. An idealized general circulation model (GCM) is used to demonstrate the causality of these links by prescribing an oceanic heat flux out of the tropical east Pacific and near the Agulhas Current. A warm bias in tropical east Pacific SSTs associated with an erroneous double ITCZ leads to a biased representation of midlatitude stationary waves in the austral hemisphere, capturing the response evident in CMIP models. Similarly, an overly diffuse sea surface temperature gradient associated with a weak Agulhas Return Current leads to an equatorward shift of the Southern Hemisphere jet bymore »more than 3° and weak stationary wave activity in the austral hemisphere. Hence, rectification of the double-ITCZ bias and a better representation of the Agulhas Current should be expected to lead to an improved model representation of the austral hemisphere.« less