skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Top Feasible Arm Identification
We propose a new variant of the top arm identification problem, top feasible arm identification, where there are K arms associated with D-dimensional distributions and the goal is to find m arms that maximize some known linear function of their means subject to the constraint that their means belong to a given set P € R D. This problem has many applications since in many settings, feedback is multi-dimensional and it is of interest to perform constrained maximization. We present problem-dependent lower bounds for top feasible arm identification and upper bounds for several algorithms. Our most broadly applicable algorithm, TF-LUCB-B, has an upper bound that is loose by a factor of OpDlogpKqq. Many problems of practical interest are two dimensional and, for these, it is loose by a factor of OplogpKqq. Finally, we conduct experiments on synthetic and real-world datasets that demonstrate the effectiveness of our algorithms. Our algorithms are superior both in theory and in practice to a naive two-stage algorithm that first identifies the feasible arms and then applies a best arm identification algorithm to the feasible arms.  more » « less
Award ID(s):
1838179
PAR ID:
10129930
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)
Page Range / eLocation ID:
1593-1601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The pure-exploration problem in stochastic multi-armed bandits aims to find one or more arms with the largest (or near largest) means. Examples include finding an ϵ-good arm, best-arm identification, top-k arm identification, and finding all arms with means above a specified threshold. However, the problem of finding \emph{all} ϵ-good arms has been overlooked in past work, although arguably this may be the most natural objective in many applications. For example, a virologist may conduct preliminary laboratory experiments on a large candidate set of treatments and move all ϵ-good treatments into more expensive clinical trials. Since the ultimate clinical efficacy is uncertain, it is important to identify all ϵ-good candidates. Mathematically, the all-ϵ-good arm identification problem is presents significant new challenges and surprises that do not arise in the pure-exploration objectives studied in the past. We introduce two algorithms to overcome these and demonstrate their great empirical performance on a large-scale crowd-sourced dataset of 2.2M ratings collected by the New Yorker Caption Contest as well as a dataset testing hundreds of possible cancer drugs. 
    more » « less
  2. We study the problem of Robust Outlier Arm Identification (ROAI), where the goal is to identify arms whose expected rewards deviate substantially from the majority, by adaptively sampling from their reward distributions. We compute the outlier threshold using the median and median absolute deviation of the expected rewards. This is a robust choice for the threshold compared to using the mean and standard deviation, since it can identify outlier arms even in the presence of extreme outlier values. Our setting is different from existing pure exploration problems where the threshold is pre-specified as a given value or rank. This is useful in applications where the goal is to identify the set of promising items but the cardinality of this set is unknown, such as finding promising drugs for a new disease or identifying items favored by a population. We propose two 𝛿 -PAC algorithms for ROAI, which includes the first UCB-style algorithm for outlier detection, and derive upper bounds on their sample complexity. We also prove a matching, up to logarithmic factors, worst case lower bound for the problem, indicating that our upper bounds are generally unimprovable. Experimental results show that our algorithms are both robust and about 5 x sample efficient compared to state-of-the-art. 
    more » « less
  3. We consider the bandit problem of selecting K out of N arms at each time step. The joint reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among all possible combinations, making the action space large. To simplify the problem, existing works on combinatorial bandits typically assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-K subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without using individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in N. Further, DART achieves a regret bound of Õ(K√KNT) for a time horizon T, which matches the lower bound in bandit feedback up to a factor of √log 2NT. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments. 
    more » « less
  4. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    In the stochastic contextual bandit setting, regret-minimizing algorithms have been extensively researched, but their instance-minimizing best-arm identification counterparts remain seldom studied. In this work, we focus on the stochastic bandit problem in the (ǫ, δ)-PAC setting: given a policy class Π the goal of the learner is to return a policy π ∈ Π whose expected reward is within ǫ of the optimal policy with probability greater than 1 − δ. We characterize the first instance-dependent PAC sample complexity of contextual bandits through a quantity ρΠ, and provide matching upper and lower bounds in terms of ρΠ for the agnostic and linear contextual best-arm identification settings. We show that no algorithm can be simultaneously minimax-optimal for regret minimization and instance-dependent PAC for best-arm identification. Our main result is a new instance-optimal and computationally efficient algorithm that relies on a polynomial number of calls to an argmax oracle. 
    more » « less
  5. In many real-world applications, multiple agents seek to learn how to perform highly related yet slightly different tasks in an online bandit learning protocol. We formulate this problem as the ϵ-multi-player multi-armed bandit problem, in which a set of players concurrently interact with a set of arms, and for each arm, the reward distributions for all players are similar but not necessarily identical. We develop an upper confidence bound-based algorithm, RobustAgg(ϵ), that adaptively aggregates rewards collected by different players. In the setting where an upper bound on the pairwise dissimilarities of reward distributions between players is known, we achieve instance-dependent regret guarantees that depend on the amenability of information sharing across players. We complement these upper bounds with nearly matching lower bounds. In the setting where pairwise dissimilarities are unknown, we provide a lower bound, as well as an algorithm that trades off minimax regret guarantees for adaptivity to unknown similarity structure. 
    more » « less