With sensors becoming increasingly ubiquitous, there is tremendous potential for Internet of Things (IoT) services that can take advantage of the data collected by these sensors. Although there are a growing number of technologies focused on IoT services, there is relatively limited foundational work on them. This is partly because of the lack of precise understanding, specification, and analysis of such services, and, consequently, there is limited platform support for programming them. In this paper, we present a formal model for understanding and enabling reasoning about distributed IoT services. The paper first studies the key properties of the IoT services profoundly, and then develops an approach for fine-grained resource coordination and control for such services. The resource model identifies the core mechanisms underlying IoT services, informing design and implementation decisions about them if implemented over a middleware or a platform. We took a multi-agent systems approach to represent IoT services, broadly founded in the actors model of concurrency. Actor-based services can be built by composing simpler services. Furthermore, we created a proximity model to represent an appropriate notion of IoT proximity. This model represents the dynamically evolving relationship between the service’s sensing and acting capabilities and the environments in which these capabilities are exercised. The paper also presents the design of a runtime environment to support the implementation of IoT services. Key mechanisms required by such services will be implemented in a distributed middleware.
more »
« less
Energy Efficient Middleware for Dynamic Data Driven Application Systems
Middleware is required to support and interface multi-modal Dynamic Data Driven Application Systems (DDDAS) with back-end and other computing facilities. Middleware is also needed to support distributed simulations and emulations needed in earlier phases of system development. This work describes the Green Runtime Infrastructure (G-RTI), an energy-efficient client server based middleware developed to support distributed DDDAS simulation, emulation and deployment. G-RTI eases and accelerates the development and testing of multi-modal studies, testbeds and DDDAS systems. It serves as a platform for research in energy reduction techniques for middleware services. The services implemented by G-RTI are described and results of benchmarking studies are reported. Its application is demonstrated through a use-case for an end-to-end implementation of a connected vehicle application. G-RTI is open source.
more »
« less
- Award ID(s):
- 1745580
- PAR ID:
- 10129946
- Date Published:
- Journal Name:
- Winter Simulation Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Internet of Things (IoT) requires distributed, large scale data collection via geographically distributed devices. While IoT devices typically send data to the cloud for processing, this is problematic for bandwidth constrained applications. Fog and edge computing (processing data near where it is gathered, and sending only results to the cloud) has become more popular, as it lowers network overhead and latency. Edge computing often uses devices with low computational capacity, therefore service frameworks and middleware are needed to efficiently compose services. While many frameworks use a top-down perspective, quality of service is an emergent property of the entire system and often requires a bottom up approach. We define services as multi-modal, allowing resource and performance tradeoffs. Different modes can be composed to meet an application's high level goal, which is modeled as a function. We examine a case study for counting vehicle traffic through intersections in Nashville. We apply object detection and tracking to video of the intersection, which must be performed at the edge due to privacy and bandwidth constraints. We explore the hardware and software architectures, and identify the various modes. This paper lays the foundation to formulate the online optimization problem presented by the system which makes tradeoffs between the quantity of services and their quality constrained by available resources.more » « less
-
A large amount of data is produced by mobile devices today. The rising computational abilities and sophisticated operating systems (OS) on these devices have allowed us to create applications that are able to leverage this data to deliver better services. But today’s mobile technology is heavily limited by low battery capacity and limited cooling capabilities, which has motivated a search for new ways to optimize for energy-efficiency. A challenge in conducting such optimizations for today’s mobile devices is to be able to make changes in complex OS and application software architectures. Middleware has been becoming an increasingly popular solution for inserting energy-efficient solutions and optimizations in a robust manner, without altering the OS or application code. This is because of the flexibility and standardization that can be achieved through middleware. In this paper, we discuss some powerful and promising developments in prototyping middleware for energy efficient and robust execution of a variety of applications on commodity mobile computing devices.more » « less
-
A very large amount of data is produced by mobile and Internet-of-Thing (IoT) devices today. Increasing computational abilities and more sophisticated operating systems (OS) on these devices have allowed us to create applications that are able to leverage this data to deliver better services. But today’s mobile and IoT solutions are heavily limited by low battery capacity and limited cooling capabilities. This motivates a search for new ways to optimize for energy-efficiency. Advanced data analytics and machine-learning techniques are becoming increasingly popular to analyze and extract meaning from Big Data. In this paper, we make the case for designing and deploying data analytics and learning mechanisms to improve energy-efficiency in IoT and mobile devices with minimal overheads. We focus on middleware for inserting energy-efficient data analytics-driven solutions and optimizations in a robust manner, without altering the OS or application code. We discuss several case studies of powerful and promising developments in deploying data analytics middleware for energy-efficient and robust execution of a variety of applications on commodity mobile devices.more » « less
-
Programming languages, libraries, and development tools have transformed the application development processes for mobile computing and machine learning. This paper introduces CyPhyHouse-a toolchain that aims to provide similar programming, debugging, and deployment benefits for distributed mobile robotic applications. Users can develop hardware-agnostic, distributed applications using the high-level, event driven Koord programming language, without requiring expertise in controller design or distributed network protocols. The modular, platform-independent middleware of CyPhyHouse implements these functionalities using standard algorithms for path planning (RRT), control (MPC), mutual exclusion, etc. A high-fidelity, scalable, multi-threaded simulator for Koord applications is developed to simulate the same application code for dozens of heterogeneous agents. The same compiled code can also be deployed on heterogeneous mobile platforms. The effectiveness of CyPhyHouse in improving the design cycles is explicitly illustrated in a robotic testbed through development, simulation, and deployment of a distributed task allocation application on in-house ground and aerial vehicles.more » « less
An official website of the United States government

