skip to main content

Title: Analytical Study Based Optimal Placement of Energy Storage Devices in Power Systems to Support Voltage and Angle Stability
Larger penetration of Distributed Generations (DG) in the power system brings new flexibility and opportunity as well as new challenges due to the generally intermittent nature of DG. When these DG are installed in the medium voltage distribution systems as components of the smart grid, further support is required to ensure a smooth and controllable operation. To complement the uncontrollable output power of these resources, energy storage devices need to be incorporated to absorb excessive power and provide power shortage in time of need. They also can provide reactive power to dynamically help the voltage profile. Energy Storage Systems (ESS) can be expensive and limited number of them can practically be installed in distribution systems. In addition to frequency regulation and energy time shifting, ESS can support voltage and angle stability in the power network. This paper applies a Jacobian matrix-based sensitivity analysis to determine the most appropriate node in a grid to collectively improve the voltage magnitude and angle of all the nodes by active/reactive power injection. IEEE 14, 24, and 123-bus distribution system are selected to demonstrate the performance of the proposed method. As opposed to most previous studies, this method does not require an iteration loop with more » a convergence problem nor a network-related complicated objective function. « less
Authors:
Award ID(s):
1650470
Publication Date:
NSF-PAR ID:
10130886
Journal Name:
International journal of smart grids
Volume:
3
Issue:
4
ISSN:
2602-439X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matchedmore »with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory.« less
  2. Low voltage microgrid systems are characterized by high sensitivity to both active and reactive power for voltage support. Also, the operational conditions of microgrids connected to active distribution systems are time-varying. Thus, the ideal controller to provide voltage support must be flexible enough to handle technical and operational constraints. This paper proposes a model predictive control (MPC) approach to provide dynamic voltage support using energy storage systems. This approach uses a simplified predictive model of the system along with operational constraints to solve an online finite-horizon optimization problem. Control signals are then computed such that the defined cost function is minimized. By proper selection of MPC weighting parameters, the quality of service provided can be adjusted to achieve the desired performance. A simulation study in Matlab/Simulink validates the proposed approach for a simplified version of a 100 kVA, 208 V microgrid using typical parameters. Results show that performance of the voltage support can be adjusted depending on the choice of weight and constraints of the controller.
  3. Uwe Sauer, Dirk (Ed.)
    A B S T R A C T The probabilistic and intermittent output power of Wind Turbines (WT) is one major inconsistency of these Renewable Energy Sources (RES). Battery Energy Storage Systems (BESS) are a suitable solution to mitigate this intermittency by smoothening WT’s output power. Although the main benefit of BESSs mentions as peak shaving and load-shifting, but in this research, it will verify that optimal placement and sizing them jointly with WTs can lead to more benefits like compensating the required system’s reactive power support from WTs. The reactive power size of WTs and BESSs will be derived from the result of the joint sizing and placement in this study, as well as their active power output to meet the load demand. This can facilitate WTs and BESSs contribution to cover the system’s required reactive power and their participation in the reactive power market and ancillary services. This paper also proposes new cost functions for both WTs and BESSs and minimizes their cost while ensuring minimal total loss (active and reactive) in the power distribution system. This can benefit both WTs’ and BESSs’ owners as well as system operators. Suitable placement and sizing of the WTs and BESSsmore »can also improve the load bus voltage profiles, which can benefit the end-users, and will verify using the proposed optimization by different case studies on the 33 bus distribution system. The results of case studies ascertain the consistency of the proposed formulation for placement and sizing BESSs and WTs jointly, as well as other benefits to the power system, the power plant owners, and system operators.« less
  4. In this paper, design of a compact high frequency four-port transformer for a Solid-State Transformer (SST) arrangement is presented. Unlike other SSTs, the four-port system integrates three active sources and a load port with galvanic isolation via a single transformer core. In addition to this feature, one of the three source ports is designed to operate at Medium Voltage (MV) 7.2kV for direct connection to 4.16kV AC grid, while other ports nominal voltages are rated at 400V. The transformer is designed to operate at 50kHz and to supply 25kW/port. Thus, the proposed system connects the MV grid, Energy Storage System (ESS), PV, and DC load to each other on a single common transformer core. Based on the system power demand and availability of renewable energy resources, utility and energy storage ports can either supply or draw power, while PV port can only supply power, maintaining the required demand for the load. This work focuses mainly on the High Frequency Transformer (HFT) design. An extensive study is carried out to obtain the optimal, compact, cost effective, and high efficiency model. Modeling, mathematical, and simulation results are derived and presented to demonstrate the viability of this design.
  5. This article proposes a new framework for the substation demand reduction and power loss minimization in distribution networks by implementing conservation voltage reduction (CVR) strategy. The proposed framework coordinates Battery Energy Storage Systems (BESS), Smart PV inverters and voltage control devices -including OLTC and voltage regulators- so that the substation demand and network power loss are reduced while the service voltage range meets the IEEE 1547 standard (120-114 V). The suggested CVR strategy is applied to the IEEE 34-bus case study system consisting of two PV generations and BESS. The smart PV inverters are controlled based on the combined Volt/VArVolt/Watt (VVW) characteristics scheme. Also, BESS is charged and discharged with regard to the time and peaks have control modes, respectively. The Arithmetic Optimization Algorithm (AOA) is implemented in MATLAB scripts for solving the optimization problem. Power flow studies are carried out using OpenDSS software. Results reveal that the new framework can achieve higher substation demand reduction considering the concurrent control of PVs and BESS.