skip to main content


Title: Large-scale star formation in Auriga region
ABSTRACT

New observations in the VI bands along with archival data from the 2MASS and WISE surveys have been used to generate a catalogue of young stellar objects (YSOs) covering an area of about 6° × 6° in the Auriga region centred at l ∼ 173° and b ∼ 1.5°. The nature of the identified YSOs and their spatial distribution are used to study the star formation in the region. The distribution of YSOs along with that of the ionized and molecular gas reveals two ring-like structures stretching over an area of a few degrees each in extent. We name these structures as Auriga Bubbles 1 and 2. The centre of the Bubbles appears to be above the Galactic mid-plane. The majority of Class I YSOs are associated with the Bubbles, whereas the relatively older population, i.e. Class ii objects are rather randomly distributed. Using the minimum spanning tree analysis, we found 26 probable subclusters having five or more members. The subclusters are between ∼0.5 and ∼3 pc in size and are somewhat elongated. The star formation efficiency in most of the subcluster region varies between 5 ${{\ \rm per\ cent}}$ and 20 ${{\ \rm per\ cent}}$ indicating that the subclusters could be bound regions. The radii of these subclusters also support it.

 
more » « less
NSF-PAR ID:
10131148
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2446-2467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Stellar feedback plays a crucial role in regulating baryon cycles of a galactic ecosystem, and may manifest itself in the formation of superbubbles in the interstellar medium. In this work, we used a set of high-resolution simulations to systematically study the properties and evolution of superbubbles in galactic environments. The simulations were based on the SMUGGLE galaxy formation framework using the hydrodynamical moving-mesh code arepo, reaching a spatial resolution of $\sim 4 \, \rm pc$ and mass resolution of $\sim 10^3 \, \rm M_{\odot }$. We identified superbubbles and tracked their time evolution using the parent stellar associations within the bubbles. The X-ray luminosity-size distribution of superbubbles in the fiducial run is largely consistent with the observations of nearby galaxies. The size of superbubbles shows a double-peaked distribution, with the peaks attributed to early feedback (radiative and stellar wind feedback) and supernova feedback. The early feedback tends to suppress the subsequent supernova feedback, and it is strongly influenced by star formation efficiency, which regulates the environmental density. Our results show that the volume filling factor of hot gas (T > 105.5 K) is about $12~{{\ \rm per\ cent}}$ averaged over a region of 4 kpc in height and 20 kpc in radius centred on the disc of the galaxy. Overall, the properties of superbubbles are sensitive to the choice of subgrid galaxy formation models and can, therefore, be used to constrain these models.

     
    more » « less
  2. ABSTRACT

    A naive Bayes classifier for identifying Class II YSOs has been constructed and applied to a region of the Northern Galactic Plane containing 8 million sources with good quality Gaia EDR3 parallaxes. The classifier uses the five features: Gaia G-band variability, WISE mid-infrared excess, UKIDSS and 2MASS near-infrared excess, IGAPS Hα excess, and overluminosity with respect to the main sequence. A list of candidate Class II YSOs is obtained by choosing a posterior threshold appropriate to the task at hand, balancing the competing demands of completeness and purity. At a threshold posterior greater than 0.5, our classifier identifies 6504 candidate Class II YSOs. At this threshold, we find a false positive rate around 0.02 per cent and a true positive rate of approximately 87 per cent for identifying Class II YSOs. The ROC curve rises rapidly to almost one with an area under the curve around 0.998 or better, indicating the classifier is efficient at identifying candidate Class II YSOs. Our map of these candidates shows what are potentially three previously undiscovered clusters or associations. When comparing our results to published catalogues from other young star classifiers, we find between one quarter and three quarters of high probability candidates are unique to each classifier, telling us no single classifier is finding all young stars.

     
    more » « less
  3. Abstract

    We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity (logg), magnetic field strength (B), projected rotational velocity (vsini), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lowerloggandvsini, similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Consideringloggas a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We present a catalogue of 22 755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS). The data cover ∼220 sq. arcmin to 7-orbit (∼10 ks) depth in 20 parallel pointings of the Advanced Camera for Survey’s G800L grism. The fields are located 6 arcmin away from 10 massive galaxy clusters in the HFF and CLASH footprints. 13 of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at z ∼ 0.5, to quasars at z ∼ 4, to the star formation histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of 〈z〉 = 0.60 with a median uncertainty of $\Delta z / (1+z)\lesssim 2{{\ \rm per\ cent}}$ at $F814\mathit{ W}\lesssim 23$ AB. Robust continuum detections reach a magnitude fainter. The 5 σ limiting line flux is $f_{\rm lim}\approx 5\times 10^{-17}\rm ~erg~s^{-1}~cm^{-2}$ and half of all sources have 50 per cent of pixels contaminated at ≲1 per cent. All sources have 1D and 2D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrow-band emission-line maps from the Grism Redshift and Line Analysis tool (grizli). We provide other basic sample characterizations, show data examples, and describe sources and potential investigations of interest. All data and products will be available online along with software to facilitate their use. 
    more » « less
  5. ABSTRACT

    With JWST, new opportunities to study the evolution of galaxies in the early Universe are emerging. Spitzer constraints on rest-optical properties of z ≳ 7 galaxies demonstrated the power of using galaxy stellar masses and star formation histories (SFHs) to indirectly infer the cosmic star formation history. However, only the brightest individual z ≳ 8 objects could be detected with Spitzer, making it difficult to robustly constrain activity at z ≳ 10. Here, we leverage the greatly improved rest-optical sensitivity of JWST at z ≳ 8 to constrain the ages of seven UV-bright ($M_{\rm uv}\lesssim -19.5$) galaxies selected to lie at z ∼ 8.5–11, then investigate implications for z ≳ 15 star formation. We infer the properties of individual objects with two spectral energy distribution modelling codes, then infer a distribution of ages for bright z ∼ 8.5–11 galaxies. We find a median age of ∼20 Myr, younger than that inferred at z ∼ 7 with a similar analysis, consistent with an evolution towards larger specific star formation rates at early times. The age distribution suggests that only ∼3 per cent of bright z ∼ 8.5–11 galaxies would be similarly luminous at z ≳ 15, implying that the number density of bright galaxies declines by at least an order of magnitude between z ∼ 8.5–11 and $z \sim 15$. This evolution is challenging to reconcile with some early JWST results suggesting the abundance of bright galaxies does not significantly decrease towards very early times, but we suggest this tension may be eased if young stellar populations form on top of older stellar components, or if bright z ∼ 15 galaxies are observed during a burst of star formation.

     
    more » « less