skip to main content

Title: Large-scale star formation in Auriga region
ABSTRACT

New observations in the VI bands along with archival data from the 2MASS and WISE surveys have been used to generate a catalogue of young stellar objects (YSOs) covering an area of about 6° × 6° in the Auriga region centred at l ∼ 173° and b ∼ 1.5°. The nature of the identified YSOs and their spatial distribution are used to study the star formation in the region. The distribution of YSOs along with that of the ionized and molecular gas reveals two ring-like structures stretching over an area of a few degrees each in extent. We name these structures as Auriga Bubbles 1 and 2. The centre of the Bubbles appears to be above the Galactic mid-plane. The majority of Class I YSOs are associated with the Bubbles, whereas the relatively older population, i.e. Class ii objects are rather randomly distributed. Using the minimum spanning tree analysis, we found 26 probable subclusters having five or more members. The subclusters are between ∼0.5 and ∼3 pc in size and are somewhat elongated. The star formation efficiency in most of the subcluster region varies between 5 ${{\ \rm per\ cent}}$ and 20 ${{\ \rm per\ cent}}$ indicating that the subclusters could more » be bound regions. The radii of these subclusters also support it.

« less
Authors:
 ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10131148
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
2
Page Range or eLocation-ID:
p. 2446-2467
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a detailed analysis of the ionized gas distribution and kinematics in the inner ∼ 200 pc of NGC 4546, host of a low-luminosity active galactic nucleus (LLAGN). Using GMOS−IFU observations, with a spectral coverage of 4736–6806 Å  and an angular resolution of 0.7 arcsec, we confirm that the nuclear emission is consistent with photoionization by an AGN, while the gas in the circumnuclear region may be ionized by hot low-mass evolved stars. The gas kinematics in the central region of NGC 4546 presents three components: (i) a disc with major axis oriented along a position angle of 43° ± 3°, counter rotating relative to the stellar disc; (ii) non-circular motions, evidenced by residual velocities of up to 60 km s−1, likely associated with a previous capture of a dwarf satellite by NGC 4546; and (iii) nuclear outflows in ionized gas, identified as a broad component (σ ∼ 320 km s−1) in the line profiles, with a mass outflow rate of $\dot{M}_{\rm out} = 0.3 \pm 0.1$ M⊙ yr−1 and a total mass of Mout = (9.2 ± 0.8) × 103 M⊙ in ionized gas, corresponding to less than 3 per cent of the total mass of ionized gas in the inner 200 pc of NGC 4546. The kinetic efficiency of themore »outflow is roughly 0.1 per cent, which is smaller than the outflow coupling efficiencies predicted by theoretical studies to AGN feedback become efficient in suppressing star formation in the host galaxy.

    « less
  2. ABSTRACT

    To unravel the star formation process, we present a multi-scale and multi-wavelength study of the filamentary infrared dark cloud (IRDC) G333.73 + 0.37, which hosts previously known two H ii regions located at its center. Each H ii region is associated with a mid-infrared source, and is excited by a massive OB star. Two filamentary structures and a hub-filament system (HFS) associated with one H ii region are investigated in absorption using the Spitzer 8.0 μm image. The 13CO(J = 2–1) and C18O(J = 2–1) line data reveal two velocity components (around −35.5 and −33.5 km s−1) toward the IRDC, favouring the presence of two filamentary clouds at different velocities. Non-thermal (or turbulent) motions are depicted in the IRDC using the C18O line data. The spatial distribution of young stellar objects (YSOs) identified using the VVV near-infrared data traces star formation activities in the IRDC. Low-mass cores are identified toward both the H ii regions using the ALMA 1.38 mm continuum map. The VLT/NACO adaptive-optics L′-band images show the presence of at least three point-like sources and the absence of small-scale features in the inner 4000 AU around YSOs NIR31 and MIR 16 located toward the H ii regions. The H ii regions and groups of YSO are observed toward the centralmore »part of the IRDC, where the two filamentary clouds intersect. A scenario of cloud–cloud collision or converging flows in the IRDC seems to be applicable, which may explain star formation activities including HFS and massive stars.

    « less
  3. ABSTRACT We present a catalogue of 22 755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS). The data cover ∼220 sq. arcmin to 7-orbit (∼10 ks) depth in 20 parallel pointings of the Advanced Camera for Survey’s G800L grism. The fields are located 6 arcmin away from 10 massive galaxy clusters in the HFF and CLASH footprints. 13 of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at z ∼ 0.5, to quasars at z ∼ 4, to the star formation histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of 〈z〉 = 0.60 with a median uncertainty of $\Delta z / (1+z)\lesssim 2{{\ \rm per\ cent}}$ at $F814\mathit{ W}\lesssim 23$ AB. Robust continuum detections reach a magnitude fainter. The 5 σ limiting line flux is $f_{\rm lim}\approx 5\times 10^{-17}\rm ~erg~s^{-1}~cm^{-2}$ and half of all sources have 50 per cent of pixels contaminated at ≲1 per cent. All sources have 1D and 2D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrow-band emission-line maps from the Grism Redshift and Line Analysis tool (grizli). We provide other basic sample characterizations,more »show data examples, and describe sources and potential investigations of interest. All data and products will be available online along with software to facilitate their use.« less
  4. ABSTRACT

    The nebular recombination line H α is widely used as a star formation rate (SFR) indicator in the local and high-redshift Universe. We present a detailed H α radiative transfer study of high-resolution isolated Milky-Way and Large Magellanic Cloud simulations that include radiative transfer, non-equilibrium thermochemistry, and dust evolution. We focus on the spatial morphology and temporal variability of the H α emission, and its connection to the underlying gas and star formation properties. The H α and H β radial and vertical surface brightness profiles are in excellent agreement with observations of nearby galaxies. We find that the fraction of H α emission from collisional excitation amounts to fcol ∼ 5–$10{{\ \rm per\ cent}}$, only weakly dependent on radius and vertical height, and that scattering boosts the H α luminosity by $\sim 40{{\ \rm per\ cent}}$. The dust correction via the Balmer decrement works well (intrinsic H α emission recoverable within 25 per cent), though the dust attenuation law depends on the amount of attenuation itself both on spatially resolved and integrated scales. Important for the understanding of the H α–SFR connection is the dust and helium absorption of ionizing radiation (Lyman continuum [LyC] photons), which are about $f_{\rm abs}\approx 28{{\ \rm per\ cent}}$ and $f_{\rm He}\approx 9{{\ \rmmore »per\ cent}}$, respectively. Together with an escape fraction of $f_{\rm esc}\approx 6{{\ \rm per\ cent}}$, this reduces the available budget for hydrogen line emission by nearly half ($f_{\rm H}\approx 57{{\ \rm per\ cent}}$). We discuss the impact of the diffuse ionized gas, showing – among other things – that the extraplanar H α emission is powered by LyC photons escaping the disc. Future applications of this framework to cosmological (zoom-in) simulations will assist in the interpretation of spectroscopy of high-redshift galaxies with the upcoming James Webb Space Telescope.

    « less
  5. ABSTRACT

    Misalignments between the rotation axis of stars and gas are an indication of external processes shaping galaxies throughout their evolution. Using observations of 3068 galaxies from the SAMI Galaxy Survey, we compute global kinematic position angles for 1445 objects with reliable kinematics and identify 169 (12 per cent) galaxies which show stellar-gas misalignments. Kinematically decoupled features are more prevalent in early-type/passive galaxies compared to late-type/star-forming systems. Star formation is the main source of gas ionization in only 22 per cent of misaligned galaxies; 17 per cent are Seyfert objects, while 61 per cent show Low-Ionization Nuclear Emission-line Region features. We identify the most probable physical cause of the kinematic decoupling and find that, while accretion-driven cases are dominant, for up to 8 per cent of our sample, the misalignment may be tracing outflowing gas. When considering only misalignments driven by accretion, the acquired gas is feeding active star formation in only ∼1/4 of cases. As a population, misaligned galaxies have higher Sérsic indices and lower stellar spin and specific star formation rates than appropriately matched samples of aligned systems. These results suggest that both morphology and star formation/gas content are significantly correlated with the prevalence and timescales of misalignments. Specifically, torques on misaligned gas discs are smaller for more centrallymore »concentrated galaxies, while the newly accreted gas feels lower viscous drag forces in more gas-poor objects. Marginal evidence of star formation not being correlated with misalignment likelihood for late-type galaxies suggests that such morphologies in the nearby Universe might be the result of preferentially aligned accretion at higher redshifts.

    « less