skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Judge the Judges: A Large-Scale Evaluation Study of Neural Language Models for Online Review Generation
We conduct a large-scale, systematic study to evaluate the existing evaluation methods for natural language generation in the context of generating online product reviews. We compare human-based evaluators with a variety of automated evaluation procedures, including discriminative evaluators that measure how well machine-generated text can be distinguished from human-written text, as well as word overlap metrics that assess how similar the generated text compares to human-written references. We determine to what extent these different evaluators agree on the ranking of a dozen of state-of-the-art generators for online product reviews. We find that human evaluators do not correlate well with discriminative evaluators, leaving a bigger question of whether adversarial accuracy is the correct objective for natural language generation. In general, distinguishing machine-generated text is challenging even for human evaluators, and human decisions correlate better with lexical overlaps. We find lexical diversity an intriguing metric that is indicative of the assessments of different evaluators. A post-experiment survey of participants provides insights into how to evaluate and improve the quality of natural language generation systems.  more » « less
Award ID(s):
1633370
PAR ID:
10131174
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
Page Range / eLocation ID:
3966–3979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As major progress is made in open-ended text generation, measuring how close machine-generated text is to human language remains a critical open problem. We introduce MAUVE, a comparison measure for open-ended text generation, which directly compares the learnt distribution from a text generation model to the distribution of human-written text using divergence frontiers. MAUVE scales up to modern text generation models by computing information divergences in a quantized embedding space. Through an extensive empirical study on three open-ended generation tasks, we find that MAUVE identifies known properties of generated text, scales naturally with model size, and correlates with human judgments, with fewer restrictions than existing distributional evaluation metrics. 
    more » « less
  2. As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text. 
    more » « less
  3. As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text. 
    more » « less
  4. Recently, there have been significant advances and wide-scale use of generative AI in natural language generation. Models such as OpenAI’s GPT3 and Meta’s LLaMA are widely used in chatbots, to summarize documents, and to generate creative content. These advances raise concerns about abuses of these models, especially in social media settings, such as large-scale generation of disinformation, manipulation campaigns that use AI-generated content, and personalized scams. We used stylometry (the analysis of style in natural language text) to analyze the style of AI-generated text. Specifically, we applied an existing authorship verification (AV) model that can predict if two documents are written by the same author on texts generated by GPT2, GPT3, ChatGPT and LLaMA. Our AV model was trained only on human-written text and was effectively used in social media settings to analyze cases of abuse. We generated texts by providing the language models with fanfiction snippets and prompting them to complete the rest of it in the same writing style as the original snippet. We then applied the AV model across the texts generated by the language models and the human written texts to analyze the similarity of the writing styles between these texts. We found that texts generated with GPT2 had the highest similarity to the human texts. Texts generated by GPT3 and ChatGPT were very different from the human snippet, and were similar to each other. LLaMA-generated texts had some similarity to the original snippet but also has similarities with other LLaMA-generated texts and texts from other models. We then conducted a feature analysis to identify the features that drive these similarity scores. This analysis helped us answer questions like which features distinguish the language style of language models and humans, which features are different across different models, and how these linguistic features change over different language model versions. The dataset and the source code used in this analysis have been made public to allow for further analysis of new language models. 
    more » « less
  5. Pretrained language models often do not perform tasks in ways that are in line with our preferences, e.g., generating offensive text or factually incorrect summaries. Recent work approaches the above issue by learning from a simple form of human evaluation: comparisons between pairs of model-generated task outputs. Comparison feedback conveys limited information about human preferences per human evaluation. Here, we propose to learn from natural language feedback, which conveys more information per human evaluation. We learn from language feedback on model outputs using a three-step learning algorithm. First, we condition the language model on the initial output and feedback to generate many refinements. Second, we choose the refinement with the highest similarity to the feedback. Third, we finetune a language model to maximize the likelihood of the chosen refinement given the input. In synthetic experiments, we first evaluate whether language models accurately incorporate feedback to produce refinements, finding that only large language models (175B parameters) do so. Using only 100 samples of human-written feedback, our learning algorithm finetunes a GPT-3 model to roughly human-level summarization ability. 
    more » « less