In this paper, we describe a design of a mixed-signal circuit for an binary neuron (a.k.a perceptron, threshold logic gate) and a methodology for automatically embedding such cells in ASICs. The binary neuron, referred to as an FTL (flash threshold logic) uses floating gate or flash transistors whose threshold voltages serve as a proxy for the weights of the neuron. Algorithms for mapping the weights to the flash transistor threshold voltages are presented. The threshold voltages are determined to maximize both the robustness of the cell and its speed. The performance, power, and area of a single FTL cell are shown to be significantly smaller (79.4%), consume less power (61.6%), and operate faster (40.3%) compared to conventional CMOS logic equivalents. Also included are the architecture and the algorithms to program the flash devices of an FTL. The FTL cells are implemented as standard cells, and are designed to allow commercial synthesis and P&R tools to automatically use them in synthesis of ASICs. Substantial reductions in area and power without sacrificing performance are demonstrated on several ASIC benchmarks by the automatic embedding of FTL cells. The paper also demonstrates how FTL cells can be used for fixing timing errors after fabrication.
more »
« less
Threshold Logic in a Flash
This paper describes a novel design of a threshold logic gate (a binary perceptron) and its implementation as a standard cell. This new cell structure, referred to as flash threshold logic (FTL), uses floating gate (flash) transistors to realize the weights associated with a threshold function. The threshold voltages of the flash transistors serve as a proxy for the weights. An FTL cell can be equivalently viewed as a multi-input, edge-triggered flipflop which computes a threshold function on a clock edge. Consequently, it can be used in the automatic synthesis of ASICs. The use of flash transistors in the FTL cell allows programming of the weights after fabrication, thereby preventing discovery of its function by a foundry or by reverse engineering. This paper focuses on the design and characteristics of the FTL cell. We present a novel method for programming the weights of an FTL cell for a specified threshold function using a modified perceptron learning algorithm. The algorithm is further extended to select weights to maximize the robustness of the design in the presence of process variations. The FTL circuit was designed in 40nm technology and simulations with layout-extracted parasitics included, demonstrate significant im- provements in the area (79.7%), power (61.1%), and performance (42.5%) when compared to the equivalent implementations of the same function in conventional static CMOS design. Weight selection targeting robustness is demonstrated using Monte Carlo simulations. The paper also shows how FTL cells can be used for fixing timing errors after fabrication.
more »
« less
- Award ID(s):
- 1701241
- PAR ID:
- 10131456
- Date Published:
- Journal Name:
- 38th IEEE International Conference on Computer Design
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal‐semiconductor heterostructures providing geometrically reproducible and abrupt Schottky nanojunctions are highly anticipated for the realization of emerging electronic technologies. This specifically holds for reconfigurable field‐effect transistors, capable of dynamically altering the operation mode between n‐ or p‐type even during run‐time. Targeting the enhancement of fabrication reproducibility and electrical balancing between operation modes, here a nanoscale Al‐Si‐Al nanowire heterostructure with single elementary, monocrystalline Al leads and sharp Schottky junctions is implemented. Utilizing a three top‐gate architecture, reconfiguration on transistor level is enabled. Having devised symmetric on‐currents as well as threshold voltages for n‐ and p‐type operation as a necessary requirement to exploit complementary reconfigurable circuits, selected implementations of logic gates such as inverters and combinational wired‐AND gates are reported. In this respect, exploiting the advantages of the proposed multi‐gate transistor architecture and offering additional logical inputs, the device functionality can be expanded by transforming a single transistor into a logic gate. Importantly, the demonstrated Al‐Si material system and thereof shown logic gates show high compatibility with state‐of‐the‐art complementary metal‐oxide semiconductor technology. Additionally, exploiting reconfiguration at the device level, this platform may pave the way for future adaptive computing systems with low‐power consumption and reduced footprint, enabling novel circuit paradigms.more » « less
-
Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal–oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on–off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits.more » « less
-
Organic thin-film transistors (OTFTs) are drawing increasing attention due to their unique advantages of mechanical flexibility, low-cost fabrication, and biodegradability, enabling diverse applications that were not achievable using traditional inorganic transistors. With a growing number of complex applications being proposed, the need for expediting the design process and ensuring the yield of large-scale designs with organic technology increases. A complete digital standard cell library plays a crucial role in integrating the emerging organic technology into existing computer-aided-design (CAD) flows. In this paper, we present the design, fabrication, and characterization of a standard cell library based on bottom gate, top contact pentacene OTFTs. We also propose a commercial tool compatible, RTL-to-GDS flow along with a new organic process design kit (PDK) developed based on our process. To the best of our knowledge, this is the first open-source organic standard cell library, enabling the community to explore this emerging technology.more » « less
-
null (Ed.)One approach to mitigate side-channel attacks (SCAs) is to use clockless, asynchronous digital logic. To simplify this process, we propose a unique asynchronous FPGA based on a new THx2 programmable threshold cell. At a minimum, FPGAs require a programmable logic cell that can implement a complete set of logic so that it can be connected through the programmable interconnect network to form any digital system. To meet that criteria, we take advantage of CMOS transistors to implement a programmable THx2 threshold cell capable of performing both TH12 and TH22 asynchronous operations. Our complete sixteen transistor FPGA cell includes eight transistors to implement the base THx2 threshold operation, three transistors to switch between the TH12 and TH22 modes, and five memory cell transistors for mode storage. Our unique minimal transistor, programmable THx2 implementation enables formation of a complete set of asynchronous threshold gates and a complete set of standard combinational logic functions. The symmetric nature of the FPGA cell, in regard to the number of transistors (eight NMOS and eight PMOS), makes it ideal for a four row by four column transistor grid with a nearly square, easily array-able layout. It should be noted our THx2 cell is highly compact and suitable for implementing a clockless, asynchronous FPGA.more » « less
An official website of the United States government

