skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic-flow: An open-source organic standard cell library and process development kit
Organic thin-film transistors (OTFTs) are drawing increasing attention due to their unique advantages of mechanical flexibility, low-cost fabrication, and biodegradability, enabling diverse applications that were not achievable using traditional inorganic transistors. With a growing number of complex applications being proposed, the need for expediting the design process and ensuring the yield of large-scale designs with organic technology increases. A complete digital standard cell library plays a crucial role in integrating the emerging organic technology into existing computer-aided-design (CAD) flows. In this paper, we present the design, fabrication, and characterization of a standard cell library based on bottom gate, top contact pentacene OTFTs. We also propose a commercial tool compatible, RTL-to-GDS flow along with a new organic process design kit (PDK) developed based on our process. To the best of our knowledge, this is the first open-source organic standard cell library, enabling the community to explore this emerging technology.  more » « less
Award ID(s):
1709222
PAR ID:
10185406
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Design, Automation and Test in Europe (DATE) 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs. 
    more » « less
  2. Abstract Here, a polymer blend active layer that exhibits both electronic and adhesive properties is introduced. Various conjugated polymers are blended with a catechol‐based polymer that shows high adhesion, such that blends serve as the active layer of multifunctional sticky organic thin‐film transistors (OTFTs). Blend films maintain relatively constant field‐effect charge carrier mobility in OTFTs regardless of composition. Lap shear adhesion strength tests show that all blend films exhibit adhesive properties with adhesion values ranging from 0.05 to 4.30 MPa. With relatively consistent mobility and the presence of adhesive properties at different compositions, blends of conjugated and adhesive polymers can lead to next‐generation organic transistors for stable 3D stacking and waterproof adhesive sensors. 
    more » « less
  3. Abstract Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer’s molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors. 
    more » « less
  4. This paper describes a novel design of a threshold logic gate (a binary perceptron) and its implementation as a standard cell. This new cell structure, referred to as flash threshold logic (FTL), uses floating gate (flash) transistors to realize the weights associated with a threshold function. The threshold voltages of the flash transistors serve as a proxy for the weights. An FTL cell can be equivalently viewed as a multi-input, edge-triggered flipflop which computes a threshold function on a clock edge. Consequently, it can be used in the automatic synthesis of ASICs. The use of flash transistors in the FTL cell allows programming of the weights after fabrication, thereby preventing discovery of its function by a foundry or by reverse engineering. This paper focuses on the design and characteristics of the FTL cell. We present a novel method for programming the weights of an FTL cell for a specified threshold function using a modified perceptron learning algorithm. The algorithm is further extended to select weights to maximize the robustness of the design in the presence of process variations. The FTL circuit was designed in 40nm technology and simulations with layout-extracted parasitics included, demonstrate significant im- provements in the area (79.7%), power (61.1%), and performance (42.5%) when compared to the equivalent implementations of the same function in conventional static CMOS design. Weight selection targeting robustness is demonstrated using Monte Carlo simulations. The paper also shows how FTL cells can be used for fixing timing errors after fabrication. 
    more » « less
  5. Organic electrochemical transistors (OECTs) are highly versatile in terms of their form factor, fabrication approach that can be applied, and freedom in the choice of substrate material. Their ability to transduce ionic into electric signals and the use of bio-compatible organic materials makes them ideally suited for a wide range of applications, in particular in areas where electronic circuits are interfaced with biologic matter. OECT technology has attracted widespread interest in recent years, which has been accompanied by a steady increase in its performance. However, this progress was mainly driven by device optimization and less by targeting the design of new device geometries and OECT materials. To narrow this gap, this review provides an overview on the different device models that are used to explain the underlying physics governing the steady and transient behavior of OECTs. We show how the models can be used to identify synthetic targets to produce higher performing OECT materials and summarize recently reported materials classes. Overall, a road-map of future research in new device models and material design is presented summarizing the most pressing open questions in the understanding of OECTs. 
    more » « less