Abstract Dual active galaxy nuclei (dAGNs) trace the population of post-merger galaxies and are the precursors to massive black hole (MBH) mergers, an important source of gravitational waves that may be observed by the Laser Interferometer Space Antenna (LISA). In Paper I of this series, we used the population of ≈2000 galaxy mergers predicted by the TNG50-3 simulation to seed semi-analytic models of the orbital evolution and coalescence of MBH pairs with initial separations of ≈1 kpc. Here, we calculate the dAGN luminosities and separations of these pairs as they evolve in post-merger galaxies, and show how the coalescence fraction of dAGNs changes with redshift. We find that because of the several gigayear-long dynamical friction timescale for orbital evolution, the fraction of dAGNs that eventually end in an MBH merger grows with redshift and exceeds 50% beyondzdAGN≈ 1. Dual AGNs in galaxies with bulge masses ≲1010M⊙, or consisting of near-equal-mass MBHs, evolve more quickly and have higher than average coalescence fractions. At any redshift, dAGNs observed with small separations (≲0.7 kpc) have a higher probability of merging beforez= 0 than more widely separated systems. Radiation feedback effects can significantly reduce the number of MBH mergers, and this could be manifested as a larger than expected number of widely separated dAGNs. We present a method to estimate the MBH coalescence rate as well as the potential LISA detection rate given a survey of dAGNs. Comparing these rates to the eventual LISA measurements will help determine the efficiency of dynamical friction in post-merger galaxies.
more »
« less
Probing Massive Black Hole Binary Populations with LISA
Abstract ESA and NASA are moving forward with plans to launch LISA around 2034. With data from the Illustris cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging massive black hole population. Massive black holes of total mass ∼105 − 1010M⊙ are the focus of this study. We evolve Illustris massive black hole mergers, which form at separations on the order of the simulation resolution (∼kpc scales), through coalescence with two different treatments for the binary massive black hole evolutionary process. The coalescence times of the population, as well as physical properties of the black holes, form a statistical basis for each evolutionary treatment. From these bases, we Monte Carlo synthesize many realizations of the merging massive black hole population to build mock LISA detection catalogs. We analyze how our massive black hole binary evolutionary models affect detection rates and the associated parameter distributions measured by LISA. With our models, we find massive black hole binary detection rates with LISA of ∼0.5 − 1 yr−1 for massive black holes with masses greater than 105M⊙. This should be treated as a lower limit primarily because our massive black hole sample does not include masses below 105M⊙, which may significantly add to the observed rate. We suggest reasons why we predict lower detection rates compared to much of the literature.
more »
« less
- PAR ID:
- 10132216
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- ISSN:
- 0035-8711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We evaluate the cosmological coalescence and detection rates for massive black hole (MBH) binaries targeted by the gravitational wave observatory Laser Interferometer Space Antenna (LISA). Our calculation starts with a population of gravitationally unbound MBH pairs, drawn from the TNG50-3 cosmological simulation, and follows their orbital evolution from kiloparsec scales all the way to coalescence using a semi-analytic model developed in our previous work. We find that for the majority of MBH pairs that coalesce within a Hubble time dynamical friction is the most important mechanism that determines their coalescence rate. Our model predicts an MBH coalescence rate ≲0.45 yr −1 and a LISA detection rate ≲0.34 yr −1 . Most LISA detections should originate from 10 6 to 10 6.8 M ⊙ MBHs in gas-rich galaxies at redshifts 1.6 ≤ z ≤ 2.4 and have a characteristic signal-to-noise ratio S/N ∼100. We however find a dramatic reduction in the coalescence and detection rates, as well as the average S/N, if the effects of radiative feedback from accreting MBHs are taken into account. In this case, the MBH coalescence rate is reduced by 78% (to ≲0.1 yr −1 ), and the LISA detection rate is reduced by 94% (to 0.02 yr −1 ), whereas the average S/N is ∼10. We emphasize that our model provides a conservative estimate of the LISA detection rates, due to the limited MBH mass range in TNG50-3, consistent with other works in the literature that draw their MBH pairs from cosmological simulations.more » « less
-
Abstract When modeling the population of merging binary black holes, analyses have generally focused on characterizing the distribution of primary (i.e., more massive) black holes in the binary, while using simplistic prescriptions for the distribution of secondary masses. However, the secondary mass distribution and its relationship to the primary mass distribution provide a fundamental observational constraint on the formation history of coalescing binary black holes. If both black holes experience similar stellar evolutionary processes prior to collapse, as might be expected in dynamical formation channels, the primary and secondary mass distributions would show similar features. If they follow distinct evolutionary pathways (for example, due to binary interactions that break symmetry between the initially more massive and less massive stars), their mass distributions may differ. We present the first analysis of the binary black hole population that explicitly fits for the secondary mass distribution. We find that the data is consistent with a ∼30M⊙peak existing only in the distribution of secondary rather than primary masses. This would have major implications for our understanding of the formation of these binaries. Alternatively, the data is consistent with the peak existing in both component mass distributions, a possibility not included in most previous studies. In either case, the peak is observed at , which is shifted lower than the value obtained in previous analyses of the marginal primary mass distribution, placing this feature in further tension with expectations from a pulsational pair-instability supernova pileup.more » « less
-
Abstract There are few observed high-mass X-ray binaries (HMXBs) that harbor massive black holes (BHs), and none are likely to result in a binary black hole (BBH) that merges within a Hubble time; however, we know that massive merging BBHs exist from gravitational-wave (GW) observations. We investigate the role that X-ray and GW observational selection effects play in determining the properties of their respective detected binary populations. We find that, as a result of selection effects, detectable HMXBs and detectable BBHs form at different redshifts and metallicities, with detectable HMXBs forming at much lower redshifts and higher metallicities than detectable BBHs. We also find disparities in the mass distributions of these populations, with detectable merging BBH progenitors pulling to higher component masses relative to the full detectable HMXB population. Fewer than 3% of detectable HMXBs host BHs >35M⊙in our simulated populations. Furthermore, we find the probability that a detectable HMXB will merge as a BBH system within a Hubble time is ≃0.6%. Thus, it is unsurprising that no currently observed HMXB is predicted to form a merging BBH with high probability.more » « less
-
ABSTRACT The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.more » « less