skip to main content

Title: Probing Massive Black Hole Binary Populations with LISA
Abstract ESA and NASA are moving forward with plans to launch LISA around 2034. With data from the Illustris cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging massive black hole population. Massive black holes of total mass ∼105 − 1010M⊙ are the focus of this study. We evolve Illustris massive black hole mergers, which form at separations on the order of the simulation resolution (∼kpc scales), through coalescence with two different treatments for the binary massive black hole evolutionary process. The coalescence times of the population, as well as physical properties of the black holes, form a statistical basis for each evolutionary treatment. From these bases, we Monte Carlo synthesize many realizations of the merging massive black hole population to build mock LISA detection catalogs. We analyze how our massive black hole binary evolutionary models affect detection rates and the associated parameter distributions measured by LISA. With our models, we find massive black hole binary detection rates with LISA of ∼0.5 − 1 yr−1 for massive black holes with masses greater than 105M⊙. This should be treated as a lower limit primarily because our massive black hole sample does not include masses below 105M⊙, more » which may significantly add to the observed rate. We suggest reasons why we predict lower detection rates compared to much of the literature. « less
Authors:
; ; ; ; ;
Award ID(s):
1757792 1715413
Publication Date:
NSF-PAR ID:
10132216
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There are few observed high-mass X-ray binaries (HMXBs) that harbor massive black holes (BHs), and none are likely to result in a binary black hole (BBH) that merges within a Hubble time; however, we know that massive merging BBHs exist from gravitational-wave (GW) observations. We investigate the role that X-ray and GW observational selection effects play in determining the properties of their respective detected binary populations. We find that, as a result of selection effects, detectable HMXBs and detectable BBHs form at different redshifts and metallicities, with detectable HMXBs forming at much lower redshifts and higher metallicities than detectable BBHs. We also find disparities in the mass distributions of these populations, with detectable merging BBH progenitors pulling to higher component masses relative to the full detectable HMXB population. Fewer than 3% of detectable HMXBs host BHs >35Min our simulated populations. Furthermore, we find the probability that a detectable HMXB will merge as a BBH system within a Hubble time is ≃0.6%. Thus, it is unsurprising that no currently observed HMXB is predicted to form a merging BBH with high probability.

  2. ABSTRACT

    The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.

  3. Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $\mathcal {M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $\Sigma _0\ge 10^{4-6} \rmmore »\, g cm^{-2}$, depending on q, α and $\mathcal {M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction.« less
  4. ABSTRACT

    In this work, we establish and test methods for implementing dynamical friction (DF) for massive black hole pairs that form in large volume cosmological hydrodynamical simulations that include galaxy formation and black hole growth. We verify our models and parameters both for individual black hole dynamics and for the black hole population in cosmological volumes. Using our model of DF from collisionless particles, black holes can effectively sink close to the galaxy centre, provided that the black hole’s dynamical mass is at least twice that of the lowest mass resolution particles in the simulation. Gas drag also plays a role in assisting the black holes’ orbital decay, but it is typically less effective than that from collisionless particles, especially after the first billion years of the black hole’s evolution. DF from gas becomes less than $1{{\ \rm per\ cent}}$ of DF from collisionless particles for BH masses >107 M⊙. Using our best DF model, we calculate the merger rate down to z = 1.1 using an Lbox = 35 Mpc h−1 simulation box. We predict ∼2 mergers per year for z > 1.1 peaking at z ∼ 2. These merger rates are within the range obtained in previous work using similar resolution hydrodynamical simulations.more »We show that the rate is enhanced by factor of ∼2 when DF is taken into account in the simulations compared to the no-DF run. This is due to ${\gt}40{{\ \rm per\ cent}}$ more black holes reaching the centre of their host halo when DF is added.

    « less
  5. Abstract Deciphering the formation of supermassive black holes (SMBHs) is a key science goal for upcoming observational facilities. In many theoretical channels proposed so far, the seed formation depends crucially on local gas conditions. We systematically characterize the impact of a range of gas-based black hole seeding prescriptions on SMBH populations using cosmological simulations. Seeds of mass Mseed ∼ 103–106 M⊙ h−1 are placed in haloes that exceed critical thresholds for star-forming, metal-poor gas mass and halo mass (defined as $\tilde{M}_{\mathrm{sf,mp}}$ and $\tilde{M}_{\mathrm{h}}$, respectively, in units of Mseed). We quantify the impact of these parameters on the properties of z ≥ 7 SMBHs. Lower seed masses produce higher black hole merger rates (by factors of ∼10 and ∼1000 at z ∼ 7 and z ∼ 15, respectively). For fixed seed mass, we find that $\tilde{M}_{\mathrm{h}}$ has the strongest impact on the black hole population at high redshift (z ≳ 15, where a factor of 10 increase in $\tilde{M}_{\mathrm{h}}$ suppresses merger rates by ≳ 100). At lower redshift (z ≲ 15), we find that $\tilde{M}_{\mathrm{sf,mp}}$ has a larger impact on the black hole population. Increasing $\tilde{M}_{\mathrm{sf,mp}}$ from 5–150 suppresses the merger rates by factors of ∼8 at z ∼ 7–15. This suggests that themore »seeding criteria explored here could leave distinct imprints on LISA merger rates. In contrast, AGN luminosity functions are much less sensitive to seeding criteria, varying by factors ≲ 2 − 3 within our models. Such variations will be challenging to probe even with future sensitive instruments such as Lynx or JWST. Our study provides a useful benchmark for development of seed models for large-volume cosmological simulations.« less