This study explains in detail a review of the graphics-based Virtual Reality (VR) hardware and software that were evaluated systematically for use in the NSF-funded study (Project MANEUVER). Project MANEUVER (Manufacturing Education Using Virtual Environment Resources), is developing an affordable VR framework to address the imminent demand for well- trained digital manufacturing (DM) technicians. This paper explains the various important factors including instructional, graphics-based, immersive, and interactive aspects that need to be carefully considered in the decision making process for the NSF Maneuver project, and this can serve as a reference for other similar projects. 3D Virtual worlds can be visualized by means of an extensive array of interfaces such as CAVE (Computer Assisted Virtual Environments), desktop VR, HMD (Head Mounted Displays), etc. The other factors that are important especially from a graphics perspective include: Hardware (CPU) and graphics requirements, cost, standalone possibility, software compatibility/support.
more »
« less
Systematic Analysis of Graphics-Based Hardware and Software for Virtual Reality Instructional Framework
This paper explains the design of a prototype desktop and augmented Virtual Reality (VR) framework as a medium to deliver instructional materials to the students in an introductory computer animation course. This framework was developed as part of a Teaching Innovation Grant to propose a cost-effective and innovative instructional frameworks to engage and stimulate students. Desktop-based virtual reality presents a 3-dimensional (3D) world using the display of a standard desktop computer available in most of the PC labs on campus. This is a required course at this university that has students not only from the primary department, but from other colleges/departments as well. Desktop VR has been chosen as a medium for this study due to the ease-of-access and affordability; this framework can be visualized and accessed with the available computers in PC labs available in university campuses. The proposed research is intended to serve as a low-cost framework that can be accessed by all students. The concepts of ‘computer graphics, modeling & animation’, instead of being presented using conventional methods such as notes or power point presentations, are presented in an interactive manner on a desktop display. This framework allows the users to interact with the objects on the display not only via the standard mouse and keyboard, but also using multiple forms of HCI such as Touchscreen, Touchpad, and 3D Mouse. Hence, the modules were developed from scratch for access via regular desktop PCs. Such a framework helps effective pedagogical strategies such as active learning (AL) and project-based learning (PBL), which are especially relevant to a highly lab-oriented course such as this course titled ‘Introduction to Animation’. Finally, the framework has also been tested on a range of VR media to check its accessibility. On the whole, this proposed framework can be used to not only teach basic modeling and animation concepts such as spatial coordinates, coordinate systems, transformation, and parametric curves, but it is also used to teach basic graphics programming concepts. Hence, instead of a touchscreen, the modules have to be developed from scratch for access via regular desktop PCs. Such a framework helps effective pedagogical strategies such as active learning (AL) and project-based learning (PBL), which are especially relevant to a highly lab-oriented course such as this animation course.
more »
« less
- Award ID(s):
- 1700674
- PAR ID:
- 10132557
- Date Published:
- Journal Name:
- ASEE annual conference exposition proceedings
- ISSN:
- 2153-5868
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction: Informational graphics and data representations (e.g., charts and figures) are critical for accessing educational content. Novel technologies, such as the multimodal touchscreen which displays audio, haptic, and visual information, are promising for being platforms of diverse means to access digital content. This work evaluated educational graphics rendered on a touchscreen compared to the current standard for accessing graphical content. Method: Three bar charts and geometry figures were evaluated on student ( N = 20) ability to orient to and extract information from the touchscreen and print. Participants explored the graphics and then were administered a set of questions (11–12 depending on graphic group). In addition, participants’ attitudes using the mediums were assessed. Results: Participants performed statistically significantly better on questions assessing information orientation using the touchscreen than print for both bar chart and geometry figures. No statistically significant difference in information extraction ability was found between mediums on either graphic type. Participants responded significantly more favorably to the touchscreen than the print graphics, indicating them as more helpful, interesting, fun, and less confusing. Discussion: Accessing and orienting to information was highly successful by participants using the touchscreen, and was the preferred means of accessing graphical information when compared to the print image for both geometry figures and bar charts. This study highlights challenges in presenting graphics both on touchscreens and in print. Implications for Practitioners: This study offers preliminary support for the use of multimodal, touchscreen tablets as educational tools. Student ability using touchscreen-based graphics seems to be comparable to traditional types of graphics (large print and embossed, tactile graphics), although further investigation may be necessary for tactile graphic users. In summary, educators of students with blindness and visual impairments should consider ways to utilize new technologies, such as touchscreens, to provide more diverse access to graphical information.more » « less
-
There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided.more » « less
-
There is an imminent need to remedy the ‘skills gaps’ in the digital manufacturing (DM) sector as evident from the Bureau of Labor Statistics projections pointing to a decline in traditional manufacturing jobs accompanied by marked growth in digital- and computer-driven manufacturing jobs. With proven advantages such as cost benefits, material conservation, minimized labor, and enhanced precision, manufacturing industries worldwide are adapting to digital manufacturing standards on a large scale. In an effort to remedy the lack of well-defined DM career pathways and instructional framework, our NSF ATE (Advanced Technological Education) project MANEUVER (Manufacturing Education Using Virtual Environment Resources) is developing an innovative pedagogical approach using virtual reality (VR). This multimodal VR framework DM instruction targeted at 2-year and 4-year manufacturing programs, facilitates the development of VR modules for multiple modes such as desktop VR, Augmented VR, and Immersive VR. The advantages of the virtual reality framework for digital manufacturing education include: significant cost reduction, reduction in equipment and maintenance costs, ability to pre-visualize the product before manufacturing. This paper introduces the design and development process of VR education tool to simulate three different additive manufacturing machines, e.g., LutzBot™, FormLabs™, and UPrint™ and different 3D printing technologies e.g., fused deposition modeling, and selective laser sintering to allow the students experience the materials and equipment needed to create the same part using different types of equipment and different types of technology.more » « less
-
Simulation can be employed as an interactive computer game to enable game-based learning. Educational simulations can also be combined with immersive technologies such as virtual reality (VR) to enhance student engagement and learning. While recent years have seen significant growth in the use of immersive technologies in education, the role and contribution of the additional immersion offered by VR still needs to be explored. This paper aims to address this gap by comparing low- and high-immersion modes for a simulation game to familiarize students with the fundamental concepts of mathematical optimization. The game resembles performing a heuristic search on the solution space for an optimization problem and involves finding the highest peak in an arctic landscape. Our research experiments include three groups of students who play the game either in VR, desktop mode, or PowerPoint slides. Our statistical comparisons show that VR enhanced students' sense of presence and learning.more » « less
An official website of the United States government

