Single-atom catalysts have the advantage of high chemical efficiency, which requires atomic-scale control during catalyst formation. In order to address this challenge, this work explores the synthesis of single-atom platinum (SA-Pt) catalysts using atomic-layer deposition (ALD) on vertical graphene (VG), in which a large number of graphene edges serve as energetically favorable nucleation sites for SA-Pt, as predicted by density functional theory calculations. Interestingly, SA-Pt has been achieved on VGs at low ALD cycle numbers of up to 60. With a further increase in the number of ALD cycles, an increasing number of Pt clusters with diameters <2 nm and Pt nanoparticles (NPs) with diameters >2 nm become dominant (nano-Pt @VG). This is in contrast to the observation of predominantly nano-Pt on other carbon nanostructures, such as carbon nanotubes and monolayer graphene, under the same ALD growth conditions, indicating that the edge states on VG indeed play a critical role in facilitating the formation of SA-Pt. Profound differences are revealed in a comparative study on H2 sensing. SA-Pt exhibits both a higher sensitivity and faster response than its nano-Pt counterpart by more than an order of magnitude, illustrating the high catalytic efficiency of SAPt and its potential for gas sensing and a variety of other catalytic applications.
more »
« less
Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries
Recently, considerable attention has been paid to the stabilization of atomic platinum (Pt) catalysts on desirable supports in order to reduce Pt consumption, improve the catalyst stability, and thereafter enhance the catalyst performance in renewable energy devices such as fuel cells and zinc-air batteries (ZABs). Herein, we rationally designed a novel strategy to stabilize atomic Pt catalysts in alloyed platinum cobalt (PtCo) nanosheets with trapped interstitial fluorine (SA-PtCoF) for ZABs. The trapped interstitial F atoms in the PtCoF matrix induce lattice distortion resulting in weakening of the Pt–Co bond, which is the driving force to form atomic Pt. As a result, the onset potentials of SA-PtCoF are 0.95 V and 1.50 V for the oxygen reduction and evolution reactions (ORR and OER), respectively, superior to commercial Pt/C@RuO 2 . When used in ZABs, the designed SA-PtCoF can afford a peak power density of 125 mW cm −2 with a specific capacity of 808 mA h g Zn −1 and excellent cyclability over 240 h, surpassing the state-of-the-art catalysts.
more »
« less
- Award ID(s):
- 1851674
- PAR ID:
- 10132709
- Date Published:
- Journal Name:
- Energy & Environmental Science
- ISSN:
- 1754-5692
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Downsizing noble metal catalysts is essential for improving atomic efficiency in sustainable energy applications. Typically, strategies focus on anchoring atomically scaled catalysts onto heteroatom-rich substrates, but these interactions can unintentionally alter the electronic structure of the catalyst, complicating the hydrogen evolution reaction (HER) mechanism. This study focuses on elucidating the interfacial mechanism of HER using structurally well-defined platinum single-atom (Pt SA) electrocatalysts. Unlike chemically reduced SAs, electrochemically deposited Pt SA catalysts do not rely on strong support interactions. As a result, these isolated Pt atoms can potentially achieve the theoretical maximum hydrogen production efficiency. This work introduces electrocatalysts composed solely of true SA sites, clarifying previous ambiguities surrounding the concept of SA electrocatalysis.more » « less
-
Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteriesnull (Ed.)Changes in the local atomic arrangement in a crystal caused by lattice-mismatch-induced strain can efficiently regulate the performance of electrocatalysts for zinc–air batteries (ZABs) in many manners, mainly due to modulated electronic structure configurations that affect the adsorption energies for oxygen-intermediates formed during oxygen reduction and evolution reactions (ORR and OER). However, the application of strain engineering in electrocatalysis has been limited by the strain relaxation caused by structural instability such as dissolution and destruction, leading to insufficient durability towards the ORR/OER. Herein, we propose a doping strategy to modulate the phase transition and formation of self-supported cobalt fluoride–sulfide (CoFS) nanoporous films using a low amount of copper (Cu) as a dopant. This well-defined Cu–CoFS heterostructure overcomes the obstacle of structural instability. Our study of the proposed Cu–CoFS also helps establish the structure–property relationship of strained electrocatalysts by unraveling the role of local strain in regulating the electronic structure of the catalyst. As a proof-of-concept, the Cu–CoFS electrocatalyst with doping-modulated strain exhibited superior onset potentials of 0.91 V and 1.49 V for the ORR and OER, respectively, surpassing commercial Pt/C@RuO 2 and benchmarking non-platinum group metal (non-PGM) catalysts. ZABs with the Cu–CoFS catalyst delivered excellent charge/discharge cycling performance with an extremely low voltage gap of 0.5 V at a current density of 10 mA cm −2 and successively 0.93 V at a high current density of 100 mA cm −2 and afforded an outstanding peak power density of 255 mW cm −2 .more » « less
-
Abstract Ionic liquids (ILs) have shown to be promising additives to the catalyst layer to enhance oxygen reduction reaction in polymer electrolyte fuel cells. However, fundamental understanding of their role in complex catalyst layers in practically relevant membrane electrode assembly environment is needed for rational design of highly durable and active platinum-based catalysts. Here we explore three imidazolium-derived ionic liquids, selected for their high proton conductivity and oxygen solubility, and incorporate them into high surface area carbon black support. Further, we establish a correlation between the physical properties and electrochemical performance of the ionic liquid-modified catalysts by providing direct evidence of ionic liquids role in altering hydrophilic/hydrophobic interactions within the catalyst layer interface. The resulting catalyst with optimized interface design achieved a high mass activity of 347 A g−1Ptat 0.9 V under H2/O2, power density of 0.909 W cm−2under H2/air and 1.5 bar, and had only 0.11 V potential decrease at 0.8 A cm−2after 30 k accelerated stress test cycles. This performance stems from substantial enhancement in Pt utilization, which is buried inside the mesopores and is now accessible due to ILs addition.more » « less
-
null (Ed.)Oxygen reduction reaction (ORR) plays an important role in dictating the performance of various electrochemical energy technologies. As platinum nanoparticles have served as the catalysts of choice towards ORR, minimizing the cost of the catalysts by diminishing the platinum nanoparticle size has become a critical route to advancing the technological development. Herein, first-principle calculations show that carbon-supported Pt 9 clusters represent the threshold domain size, and the ORR activity can be significantly improved by doping of adjacent cobalt atoms. This is confirmed experimentally, where platinum and cobalt are dispersed in nitrogen-doped carbon nanowires in varied forms, single atoms, few-atom clusters, and nanoparticles, depending on the initial feeds. The sample consisting primarily of Pt 2~7 clusters doped with atomic Co species exhibits the best mass activity among the series, with a current density of 4.16 A mg Pt − 1 at +0.85 V vs. RHE that is almost 50 times higher than that of commercial Pt/C.more » « less
An official website of the United States government

