skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online EV Scheduling Algorithms for Adaptive Charging Networks with Global Peak Constraints
Electricity bill constitutes a significant portion of operational costs for large scale data centers. Empowering data centers with on-site storages can reduce the electricity bill by shaping the energy procurement from deregulated electricity markets with real-time price fluctuations. This work focuses on designing energy procurement and storage management strategies to minimize the electricity bill of storage-assisted data centers. Designing such strategies is challenging since the net energy demand of the data center and electricity market prices are not known in advance, and the underlying problem is coupled over time due to evolution of the storage level. Using competitive ratio as the performance measure, we propose an online algorithm that determines the energy procurement and storage management strategies using a threshold based policy. Our algorithm achieves the optimal competitive ratio of as a function of the price fluctuation ratio. We validate the algorithm using data traces from electricity markets and data-center energy demands. The results show that our algorithm achieves close to the offline optimal performance and outperforms existing alternatives.%  more » « less
Award ID(s):
1752362 1736448 1711188
PAR ID:
10132913
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Sustainable Computing
ISSN:
2377-3790
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environmental concerns and rising grid prices have motivated data center owners to invest in on-site renewable energy sources. How- ever, these sources present challenges as they are unreliable and intermittent. In an effort to mitigate these issues, data centers are incorporating energy storage systems. This introduces the oppor- tunity for electricity bill reduction, as energy storage can be used for power market arbitrage. We present two supervised learning-based algorithms, LearnBuy, that learns the amount to purchase, and LearnStore, that learns the amount to store, to solve this energy procurement problem. These algorithms utilize the idea of "learning from optimal" by using the values generated by the offline optimization as a label for training. We test our algorithms on a general case, considering buying and selling back to the grid, and a special case, considering only buying from the grid. In the general case, LearnStore achieves a 10-16% reduction compared to baseline heuristics, whereas in the special case, LearnBuy achieves a 7% reduction compared to prior art. 
    more » « less
  2. This paper develops competitive bidding strategies for an online linear optimization problem with inventory management constraints in both cost minimization and profit maximization settings. In the minimization problem, a decision maker should satisfy its time-varying demand by either purchasing units of an asset from the market or producing them from a local inventory with limited capacity. In the maximization problem, a decision maker has a time-varying supply of an asset that may be sold to the market or stored in the inventory to be sold later. In both settings, the market price is unknown in each timeslot and the decision maker can submit a finite number of bids to buy/sell the asset. Once all bids have been submitted, the market price clears and the amount bought/sold is determined based on the clearing price and submitted bids. From this setup, the decision maker must minimize/maximize their cost/profit in the market, while also devising a bidding strategy in the face of an unknown clearing price. We propose DEMBID and SUPBID, two competitive bidding strategies for these online linear optimization problems with inventory management constraints for the minimization and maximization setting respectively. We then analyze the competitive ratios of the proposed algorithms and show that the performance of our algorithms approaches the best possible competitive ratio as the maximum number of bids increases. As a case study, we use energy data traces from Akamai data centers, renewable outputs from NREL, and energy prices from NYISO to show the effectiveness of our bidding strategies in the context of energy storage management for a large energy customer participating in a real-time electricity market. 
    more » « less
  3. his work investigates the potential of using aggregate controllable loads and energy storage systems from multiple heterogeneous feeders to jointly optimize a utility's energy procurement cost from the real-time market and their revenue from ancillary service markets. Toward this, we formulate an optimization problem that co-optimizes real-time and energy reserve markets based on real-time and ancillary service market prices, along with available solar power, storage and demand data from each of the feeders within a single distribution network. The optimization, which includes all network system constraints, provides real/reactive power and energy storage set-points for each feeder as well as a schedule for the aggregate system's participation in the two types of markets. We evaluate the performance of our algorithm using several trace-driven simulations based on a real-world circuit of a New Jersey utility. The results demonstrate that active participation through controllable loads and storage significantly reduces the utility's net costs, i.e., real-time energy procurement costs minus ancillary market revenues. 
    more » « less
  4. Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service. Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of frequency regulation provision. We present PowerMorph , a tight QoS-aware data center power-reshaping framework, which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph  is using “complementary workload” as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net profit. 
    more » « less
  5. We study the problem of online resource allocation, where customers arrive sequentially, and the seller must irrevocably allocate resources to each incoming customer while also facing a prespecified procurement cost function over the total allocation. The objective is to maximize the reward obtained from fulfilling the customers’ requests sans the cumulative procurement cost. We analyze the competitive ratio of a primal-dual algorithm in this setting and develop an optimization framework for designing a surrogate function for the procurement cost to be used by the algorithm to improve the competitive ratio of the primal-dual algorithm. We use the optimal surrogate function for polynomial procurement cost functions to improve on previous bounds. For general procurement cost functions, our design method uses quasiconvex optimization to find optimal design parameters. We then implement the design techniques and show the improved performance of the algorithm in numerical examples. Finally, we extend the analysis by devising a posted pricing mechanism in which the algorithm does not require the customers’ preferences to be revealed. Funding: M. Fazel’s work was supported in part by the National Science Foundation [Awards 2023166, 2007036, and 1740551]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2021.0012 . 
    more » « less