Electricity bill constitutes a significant portion of operational costs for large scale data centers. Empowering data centers with on-site storages can reduce the electricity bill by shaping the energy procurement from deregulated electricity markets with real-time price fluctuations. This work focuses on designing energy procurement and storage management strategies to minimize the electricity bill of storage-assisted data centers. Designing such strategies is challenging since the net energy demand of the data center and electricity market prices are not known in advance, and the underlying problem is coupled over time due to evolution of the storage level. Using competitive ratio as the performance measure, we propose an online algorithm that determines the energy procurement and storage management strategies using a threshold based policy. Our algorithm achieves the optimal competitive ratio of as a function of the price fluctuation ratio. We validate the algorithm using data traces from electricity markets and data-center energy demands. The results show that our algorithm achieves close to the offline optimal performance and outperforms existing alternatives.%
more »
« less
Coordinating Distribution System Resources for Co-optimized Participation in Energy and Ancillary Service Transmission System Markets
his work investigates the potential of using aggregate controllable loads and energy storage systems from multiple heterogeneous feeders to jointly optimize a utility's energy procurement cost from the real-time market and their revenue from ancillary service markets. Toward this, we formulate an optimization problem that co-optimizes real-time and energy reserve markets based on real-time and ancillary service market prices, along with available solar power, storage and demand data from each of the feeders within a single distribution network. The optimization, which includes all network system constraints, provides real/reactive power and energy storage set-points for each feeder as well as a schedule for the aggregate system's participation in the two types of markets. We evaluate the performance of our algorithm using several trace-driven simulations based on a real-world circuit of a New Jersey utility. The results demonstrate that active participation through controllable loads and storage significantly reduces the utility's net costs, i.e., real-time energy procurement costs minus ancillary market revenues.
more »
« less
- PAR ID:
- 10106062
- Date Published:
- Journal Name:
- American Control Conference
- Page Range / eLocation ID:
- 1315 to 1322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper presents one of the first real-life demonstrations of coordinated and distributed resource control for secondary frequency response in a power distribution grid. A series of tests involved up to 69 heterogeneous active distributed energy resources consisting of air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery energy storage system, and 107 passive distributed energy resources consisting of building loads and solar photovoltaic systems. The distributed control setup consists of a set of Raspberry Pi end-points exchanging messages via an ethernet switch. Actuation commands for the distributed energy resources are obtained by solving a power allocation problem at every regulation instant using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The problem formulation minimizes the sum of distributed energy resource costs while tracking the aggregate setpoint provided by the system operator. We demonstrate accurate and fast real-time distributed computation of the optimization solution and effective tracking of the regulation signal over 40 min time horizons. An economic benefit analysis confirms eligibility to participate in an ancillary services market and demonstrates up to $53k of potential annual revenue for the selected population of distributed energy resources.more » « less
-
Electricity markets are cleared by a two-stage, sequential process consisting of a forward (day-ahead) market and a spot (real-time) market. While their design goal is to achieve efficiency, the lack of sufficient competition introduces many opportunities for price manipulation. To discourage this phenomenon, some Independent System Operators (ISOs) mandate generators to submit (approximately) truthful bids in the day-ahead market. However, without fully accounting for all participants' incentives (generators and loads), the application of such a mandate may lead to unintended consequences. In this paper, we model and study the interactions of generators and inelastic loads in a two-stage settlement where generators are required to bid truthfully in the day-ahead market. We show that such mandate, when accounting for generator and load incentives, leads to a {generalized} Stackelberg-Nash game where load decisions (leaders) are performed in day-ahead market and generator decisions (followers) are relegated to the real-time market. Furthermore, the use of conventional supply function bidding for generators in real-time, does not guarantee the existence of a Nash equilibrium. This motivates the use of intercept bidding, as an alternative bidding mechanism for generators in the real-time market. An equilibrium analysis in this setting, leads to a closed-form solution that unveils several insights. Particularly, it shows that, unlike standard two-stage markets, loads are the winners of the competition in the sense that their aggregate payments are less than that of the competitive equilibrium. Moreover, heterogeneity in generators cost has the unintended effect of mitigating loads market power. Numerical studies validate and further illustrate these insights.more » « less
-
This paper proposes a market mechanism for multi-interval electricity markets with generator and storage participants. Drawing ideas from supply function bidding, we introduce a novel bid structure for storage participation that allows storage units to communicate their cost to the market using energy cycling functions that map prices to cycle depths. The resulting market-clearing process--implemented via convex programming--yields corresponding schedules and payments based on traditional energy prices for power supply and per-cycle prices for storage utilization. We illustrate the benefits of our solution by comparing the competitive equilibrium of the resulting mechanism to that of an alternative solution that uses prosumer-based bids. Our solution shows several advantages over the prosumer-based approach. It does not require a priori price estimation. It also incentivizes participants to reveal their truthful costs, thus leading to an efficient, competitive equilibrium. Numerical experiments using New York Independent System Operator (NYISO) data validate our findings.more » « less
-
Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO).more » « less
An official website of the United States government

