skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PowerMorph: QoS-Aware Server Power Reshaping for Data Center Regulation Service
Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service. Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of frequency regulation provision. We present PowerMorph , a tight QoS-aware data center power-reshaping framework, which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph  is using “complementary workload” as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net profit.  more » « less
Award ID(s):
1815643
PAR ID:
10384948
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Architecture and Code Optimization
Volume:
19
Issue:
3
ISSN:
1544-3566
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation. 
    more » « less
  2. null (Ed.)
    Wireless Charging Highways (WCHs) have been introduced by industry and academia to enable charging-while-driving for electric vehicles (EVs) and to combat range anxiety. While detailed planning and performance evaluation of such systems are crucial due to high cost and long life expectancy, most existing works assume a perfect communication environment. In this paper, we introduce a joint capacity model that takes into account both power and communication resources for WCH construction planning, and optimal day-to-day operation. The vehicle-to-infrastructure (V2I) communication and grid power capacities, along with the EV’s average service rate are formulated following technology requirements, EV speed-density characteristics, and the EV’s energy needs and consumption. In addition, a two-dimension Markov chain-based model is designed to capture the WCH power and connectivity dynamics. The proposed model can be used to calculate the system’s Quality of Service (QoS) and profit, provide design insights, and assess the impact of speed regulation, or admission control on the WCH lane. Finally, the performance of the proposed model is evaluated using real US highway data with the results demonstrating its ability to accurately capture the service provision dynamics, and to identify trade-offs between system parameters. 
    more » « less
  3. This paper discusses the challenges faced by electric power systems due to the increasing use of inverter-based renewable energy resources (IBRs) operating in grid-following mode (GFL) and the limited support they provide for the grid’s reliability and stability. With increased IBRs connected to the grid, electric utilities are increasingly requiring IBRs to behave like traditional grid-forming (GFM) synchronous generators to provide support for inertia, frequency, voltage, black start capability, and more. The paper focuses on developing GFM inverter technologies with L, LC, and LCL filters and investigates the performance of combined GFM and GFL inverters with different filtering mechanisms when supplying different types of loads. It also emphasizes achieving voltage controllability at the point of common coupling of the GFM with the rest of an AC system. EMT simulation is utilized to investigate the interaction of combined GFM and GFL inverters with different filtering mechanisms. The research results will assist electric utilities in ensuring the reliability and stability of electric power systems in the future. 
    more » « less
  4. Escalating application demand and the end of Dennard scaling have put energy management at the center of cloud operations. Because of the huge cost and long lead time of provisioning new data centers, operators want to squeeze as much use out of existing data centers as possible, often limited by power provisioning fixed at the time of construction. Workload demand spikes and the inherent variability of renewable energy, as well as increased power unreliability from extreme weather events and natural disasters, make the data center power management problem even more challenging. We believe it is time to build a power control plane to provide fine-grained observability and control over data center power to operators. Our goal is to help make data centers substantially more elastic with respect to dynamic changes in energy sources and application needs, while still providing good performance to applications. There are many use cases for cloud power control, including increased power oversubscription and use of green energy, resilience to power failures, large-scale power demand response, and improved energy efficiency. 
    more » « less
  5. In recent years, global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind, solar photovoltaics (PVs), hydro, and geothermal. Concurrently, green hydrogen, produced via water electrolysis using these RESs, has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore, hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs, which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress, the hydrogen economy remains nascent, with ongoing developments and persistent uncertainties in economic, technological, and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain, encompassing production, transportation logistics, storage methodologies, and end-use applications, while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems, with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover, this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies. 
    more » « less