skip to main content


Title: Optical imaging of dental plaque pH
Tooth decay is one of the most common chronic infectious diseases worldwide. Bacteria from the oral biofilm create a local acidic environment that demineralizes the enamel in the caries disease process. By optically imaging plaque pH in pits and fissures and contacting surfaces of teeth, then medicinal therapies can be accurately applied to prevent or monitor the reversal of caries. To achieve this goal, the fluorescence emission from an aqueous solution of sodium fluorescein was measured using a multimodal scanning fiber endoscope (mmSFE). The 1.6-millimeter diameter mmSFE scans 424nm laser light and collects wide-field reflectance for navigational purposes in grayscale at 30 Hz. Two fluorescence channels centered at 520 and 549 nm are acquired and ratiometric analysis produces a pseudo-color overlay of pH. In vitro measurements calibrate the pH heat maps in the range 4.7 to 7.2 pH (0.2 standard deviation). In vivo measurements of a single case study provides informative images of interproximal biofilm before and after a sugar rinse. Post processing a time series of images provides a method that calculates the average pH changes of oral biofilm, replicating the Stephan Curve. These spatio-temporal records of oral biofilm pH can provide a new method of assessing the risk of tooth decay, guide the application of preventative therapies, and provide a quantitative monitor of overall oral health. The non-contact in vivo optical imaging of pH may be extended to measurements of wound healing, tumor environment, and other food processing surfaces since it relies on low power laser light and a US FDA approved dye.  more » « less
Award ID(s):
1631146
NSF-PAR ID:
10134083
Author(s) / Creator(s):
Date Published:
Journal Name:
SPIE Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling
Volume:
11315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Untreated tooth decays affect nearly one third of the world and is the most prevalent disease burden among children. The disease progression of tooth decay is multifactorial and involves a prolonged decrease in pH, resulting in the demineralization of tooth surfaces. Bacterial species that are capable of fermenting carbohydrates contribute to the demineralization process by the production of organic acids. The combined use of machine learning and 16s rRNA sequencing offers the potential to predict tooth decay by identifying the bacterial community that is present in an individual’s oral cavity. A few recent studies have demonstrated machine learning predictive modeling using 16s rRNA sequencing of oral samples, but they lack consideration of the multifactorial nature of tooth decay, as well as the role of fungal species within their models. Here, the oral microbiome of mother–child dyads (both healthy and caries-active) was used in combination with demographic–environmental factors and relevant fungal information to create a multifactorial machine learning model based on the LASSO-penalized logistic regression. For the children, not only were several bacterial species found to be caries-associated ( Prevotella histicola, Streptococcus mutans , and Rothia muciloginosa ) but also Candida detection and lower toothbrushing frequency were also caries-associated. Mothers enrolled in this study had a higher detection of S. mutans and Candida and a higher plaque index. This proof-of-concept study demonstrates the significant impact machine learning could have in prevention and diagnostic advancements for tooth decay, as well as the importance of considering fungal and demographic–environmental factors. 
    more » « less
  2. In this paper, we introduce an oral motion-powered Smart Tooth system that can monitor oral health. Lower pH is an indicator of bacterial accumulation in the oral cavity, which can cause tooth decay, periodontal or peri-implant diseases. Thus, in situ monitoring pH inside of the mouth is critical to prevent oral diseases. Using a piezoelectric dental crown, Smart Tooth system converts oral motions, such as chewing, to electrical power which can impinge a surface integrated LC transponder. The LC transponder also incorporates iron oxide nanoparticles-embedded pH-sensitive hydrogel that modulates the resonant frequency via shrinking or swelling. As a proof of concept, the fabricated prototype measures pH levels ranging from pH 4 to 12 and sends data wirelessly to the receiver placed up to 5 cm away (wireless transmission path loss at 3 cm was 50.79 dB). The results indicate that the Smart Tooth system can monitor oral health while replacing missing teeth. 
    more » « less
  3. null (Ed.)
    Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63). 
    more » « less
  4. Bacterial biofilms associated with implants remain a significant source of infections in dental, implant, and other healthcare industries due to challenges in biofilm removal. Biofilms consist of bacterial cells surrounded by a matrix of extracellular polymeric substance (EPS), which protects the colony from many countermeasures, including antibiotic treatments. Biofilm EPS composition is also affected by environmental factors. In the oral cavity, the presence of sucrose affects the growth of Streptococcus mutans that produce acids, eroding enamel and forming dental caries. Biofilm formation on dental implants commonly leads to severe infections and failure of the implant. This work determines the effect of sucrose concentration on biofilm EPS formation and adhesion of Streptococcus mutans, a common oral colonizer. Bacterial biofilms are grown with varying concentrations of sucrose on titanium substrates simulating dental implant material. Strategies for measuring adhesion for films such as peel tests are inadequate for biofilms, which have low cohesive strength and will fall apart when tensile loading is applied directly. The laser spallation technique is used to apply a stress wave loading to the biofilm, causing the biofilm to delaminate at a critical tensile stress threshold. Biofilm formation and EPS structures are visualized at high magnification with scanning electron microscopy (SEM). Sucrose enhanced the EPS production of S. mutans biofilms and increased the adhesion strength to titanium, the most prevalent dental implant material. However, there exists a wide range of sucrose concentrations that are conducive for robust formation and adhesion of S. mutans biofilms on implant surfaces. 
    more » « less
  5. Untreated dental decay is the most prevalent dental problem in the world, affecting up to 2.4 billion people and leading to significant economic and social burden. Early detection can greatly mitigate irreversible effects of dental decay, avoiding the need for expensive restorative treatment that forever disrupts the enamel protective layer of teeth. However, two key challenges exist that make early decay management difficult: unreliable detection, and lack of quantitative monitoring during treatment. New optically-based imaging through the enamel provides the dentist a safe means to detect, locate, and monitor the healing process. This work explores the use of an Augmented Reality (AR) headset to improve the workflow of early decay therapy and monitoring. The proposed workflow includes two novel AR-enabled features: 1) in-situ visualization of pre-operative optically-based dental images and 2) augmented guidance for repetitive imaging during therapy monitoring. The workflow is designed to minimize distraction, mitigate hand-eye coordination problems, and help guide monitoring of early decay during therapy in both clinical and mobile environments. The results from quantitative evaluations as well as a formative qualitative user study uncover the potentials of our system and indicates that AR can serve as a promising tool in tooth decay management. 
    more » « less